

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class PDFParser

	java.lang.Object
	
	org.faceless.pdf2.PDFParser

	
	All Implemented Interfaces:
	Pageable

public class PDFParser
extends Object
implements Pageable

 The PDFParser class can be used to parse the contents of a PDF document,
 for example converting it to an Image, writing to TIFF, printing it and so on. Typically you
 will either use PDFParser directly when working on the whole document (for instance,
 to save the PDF as a multi-page TIFF), or will use it to get a PagePainter object for
 parsing individual pages or a PageExtractor object, to extract text and images from a
 specific page.

 Note that this class is part of the "Viewer Extension" of the library - although
 it's supplied with the package an "viewer extension" license must be purchased to activate
 this class. While the library is unlicensed this class may be used freely, although a "DEMO"
 stamp will be applied to each document.

 This class implements Pageable, which means it can be printed directly using the
 PrinterJob.setPageable() method.

	Since:
	2.5

	

	

Field Summary

Fields 	Modifier and Type	Field	Description
	static ColorModel	BLACKANDWHITE	
A ColorModel that can be passed in to writeAsTIFF() or the
 various PagePainter methods which represent a 1-bit black and white
 color model.

	static ColorModel	CMYK	
A ColorModel that can be passed in to writeAsTIFF() of the
 various PagePainter methods which represent an opaque CMYK color model.

	static ColorModel	GRAYSCALE	
A ColorModel that can be passed in to writeAsTIFF() of the
 various PagePainter methods which represent an opaque grayscale color model

	static ColorModel	RGB	
A ColorModel that can be passed in to writeAsTIFF() of the
 various PagePainter methods which represent an opaque RGB color model.

	static ColorModel	RGBA	
A ColorModel that can be passed in to writeAsTIFF() of the
 various PagePainter methods which represent a translucent RGB color model with
 an alpha component.

	static ColorModel	SEPARATIONS	

 A ColorModel that can be passed to PagePainter.getImage(float).

	

Fields inherited from interface java.awt.print.Pageable

UNKNOWN_NUMBER_OF_PAGES

	

Constructor Summary

Constructors 	Constructor	Description
	PDFParser(PDF pdf)	
Creates a PDFParser from the specified PDF document.

	

Method Summary

All Methods Static Methods Instance Methods Concrete Methods 	Modifier and Type	Method	Description
	static ColorModel	getBlackAndWhiteColorModel(int threshold)	

 Return a Black and White ColorModel that ensures that any colours
 below the specified threshold are converted to black.

	static ColorModel	getBlackAndWhiteDitheredColorModel()	

 Return a Black and White ColorModel that performs dithering on pixels.

	HtmlDerivation	getHtmlDerivation()	
Return a new HtmlDerivation based on this PDFParser

	org.apache.lucene.document.Document	getLuceneDocument(boolean createall,
 boolean createbody,
 boolean createpages)	

 Create a Document object for indexing the PDF with the
 Apache Lucene full-text indexing library.

	int	getNumberOfPages()	
Return the number of pages in the document being parsed.

	PageExtractor	getPageExtractor(int pagenumber)	
Returns a PageExtractor for the specified page number.

	PageExtractor	getPageExtractor(PDFPage page)	
Returns a PageExtractor for the specified page.

	List<PageExtractor>	getPageExtractors()	
Get a list containining all the PageExtractors for this
 PDF, in order.

	PageFormat	getPageFormat(int pagenumber)	
Returns the PageFormat for the specified page.

	PagePainter	getPagePainter(int pagenumber)	
Returns a PagePainter for the specified page number.

	PagePainter	getPagePainter(PDFPage page)	
Returns a PagePainter for the specified page.

	PDF	getPDF()	
Return the PDF this PDFParser is built from.

	Printable	getPrintable(int pagenumber)	
Returns the Printable interface for a page.

	Document	getStructureTree()	

 Returns the Structure Tree for the entire document as a W3C Document.

	float	getWriteAsTIFFProgress()	
Get the progress of the writeAsTIFF() method running in a different
 thread.

	boolean	isExtractable()	
Return true if this PDF allows it's text and/or images to be extracted by calling
 the getPageExtractor(int) method.

	boolean	isPrintable()	
Return true if this PDF is allowed to be printed.

	void	resetPageExtractor(PDFPage page)	
Reset the previously created PageExtractor.

	void	setFont(String fontname,
 Object font)	
Specify a font substitution to use.

	void	setOutputProfile(OutputProfile profile)	
Set the OutputProfile which should be updated for any extraction or rendering
 performed with this PDFParser.

	void	setPrintAsImageResolution(int dpi)	
When printing a PDF via this classes Pageable interface,
 it can sometimes be useful to force the PDF to print as an image
 at a specific resolution.

	void	writeAsTIFF(OutputStream out,
 int dpi,
 ColorModel model)	

 Convert the PDF to a TIFF image using the specified ColorModel and dots per inch.

	void	writeAsTIFF(OutputStream out,
 int dpi,
 ColorModel model,
 RenderingHints hints)	
As for writeAsTIFF(OutputStream,int,ColorModel) but allows the user to
 set RenderingHints to control the rendering process.

	

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

	

	

Field Detail

	
BLACKANDWHITE

public static final ColorModel BLACKANDWHITE

A ColorModel that can be passed in to writeAsTIFF() or the
 various PagePainter methods which represent a 1-bit black and white
 color model. When writing TIFF images however, we recommend using a model returned
 getBlackAndWhiteColorModel(int) instead of this model, as they're much faster.

	See Also:
	getBlackAndWhiteColorModel(int)

	
GRAYSCALE

public static final ColorModel GRAYSCALE

A ColorModel that can be passed in to writeAsTIFF() of the
 various PagePainter methods which represent an opaque grayscale color model

	
RGB

public static final ColorModel RGB

A ColorModel that can be passed in to writeAsTIFF() of the
 various PagePainter methods which represent an opaque RGB color model.

	
RGBA

public static final ColorModel RGBA

A ColorModel that can be passed in to writeAsTIFF() of the
 various PagePainter methods which represent a translucent RGB color model with
 an alpha component. TIFFs created this way will have a transparent background.

	Since:
	2.5.2

	
CMYK

public static final ColorModel CMYK

A ColorModel that can be passed in to writeAsTIFF() of the
 various PagePainter methods which represent an opaque CMYK color model.

	Since:
	2.5.2

	
SEPARATIONS

public static final ColorModel SEPARATIONS

 A ColorModel that can be passed to PagePainter.getImage(float). The returned
 image will be in a DeviceNColorSpace based on CMYK, but also containing a
 channel for any spot colors that are used in the PDF. This image can be converted
 to RGB for a "print preview" using the DeviceNColorSpace.getColorConvertOp
 method, or the image can be converted to a PDFImage for embedding into a
 PDF.

 This ColorModel can also be passed to writeAsTIFF(), but if the
 returned image contains more than four color components (i.e. it has Spot colors) then
 while the resulting file will be technically valid - the TIFF format allows
 multi-channel images - it will be unviewable, as the TIFF will not include a
 color-space specifying how to convert the N-channels to XYZ or RGB.

	Since:
	2.28.3
	See Also:
	DeviceNColorSpace.getColorConvertOp(java.awt.color.ColorSpace, java.lang.Object...)

	

Constructor Detail

	
PDFParser

public PDFParser(PDF pdf)

Creates a PDFParser from the specified PDF document.

	Parameters:
	pdf - the PDF to parse

	

Method Detail

	
getPDF

public final PDF getPDF()

Return the PDF this PDFParser is built from.

	Since:
	2.11.3

	
getPagePainter

public PagePainter getPagePainter(int pagenumber)

Returns a PagePainter for the specified page number.
 Just calls getPagePainter(pdf.getPage(pagenumber))

	Parameters:
	pagenumber - the page to select, from 0 to PDF.getNumberOfPages()
	Returns:
	a PagePainter for the specified page

	
getPagePainter

public PagePainter getPagePainter(PDFPage page)

Returns a PagePainter for the specified page.

	Parameters:
	page - the PDFPage to select
	Returns:
	a PagePainter for the specified page
	Since:
	2.7.1

	
getPageExtractor

public PageExtractor getPageExtractor(int pagenumber)

Returns a PageExtractor for the specified page number.
 Just calls getPageExtractor(pdf.getPage(pagenumber))

	Parameters:
	pagenumber - the page to select, from 0 to PDF.getNumberOfPages()
	Returns:
	a PageExtractor for the specified page
	Since:
	2.6.1
	See Also:
	isExtractable()

	
getPageExtractor

public PageExtractor getPageExtractor(PDFPage page)

Returns a PageExtractor for the specified page.
 If the PDF does not allow extraction, throws a SecurityException

	Parameters:
	page - the page to select.
	Returns:
	a PageExtractor for the specified page
	Since:
	2.7.1
	See Also:
	isExtractable()

	
resetPageExtractor

public void resetPageExtractor(PDFPage page)

Reset the previously created PageExtractor. This will only need
 to be done if that page has had its content altered, ie by
 appending to it or by changing its orientation.

	Since:
	2.11.7

	
getPageExtractors

public List<PageExtractor> getPageExtractors()

Get a list containining all the PageExtractors for this
 PDF, in order. This is not a particularly expensive operation
 as the extraction is not run when the extractor is created.

	Since:
	2.11.7

	
getStructureTree

public Document getStructureTree()

 Returns the Structure Tree for the entire document as a W3C Document.
 As of 2.24, this is simply an alias for the following:

 Document doc = pdf.getStructureTree();
 doc.getDomConfig().setParameter("extract-text", true);
 return doc

	Returns:
	the document-wide Structure Tree.
	Since:
	2.19
	See Also:
	PDF.getStructureTree()

	
setFont

public void setFont(String fontname,
 Object font)

Specify a font substitution to use. For unembedded fonts, the library must
 choose a substitute font to render the glyphs. Typically the heuristics
 used are quite effective, but occasionally (particularly with east-asian
 fonts) this may need to be overridden. This method allows you to specify
 the mapping from a PDF font name to an AWT font, overriding the heuristics.

	Parameters:
	fontname - the name of the font used in the PDF
	font - the Font to use - either a Font or an OpenTypeFont
	Since:
	2.7.7 (since 2.11.17 the second parameter can also be an OpenTypeFont)

	
setPrintAsImageResolution

public void setPrintAsImageResolution(int dpi)

When printing a PDF via this classes Pageable interface,
 it can sometimes be useful to force the PDF to print as an image
 at a specific resolution. This method can be called to set that
 resolution - the default value is 0 which means the file will
 not be printed as an image. Any other value will cause the page
 being printed to be converted to a bitmap to that resolution before
 printing. Suggested values are between 150 and 600.

	Since:
	2.16.4

	
isPrintable

public boolean isPrintable()

Return true if this PDF is allowed to be printed.
 Since 2.8.2 this method simply returns the value of
 EncryptionHandler.hasRight("Print")

	Returns:
	true if the document is allowed to be printed

	
isExtractable

public boolean isExtractable()

Return true if this PDF allows it's text and/or images to be extracted by calling
 the getPageExtractor(int) method. PDF's may optionally be encrypted to prevent
 this - see the StandardEncryptionHandler class for more information.
 Since 2.8.2 this method simply returns the value of
 EncryptionHandler.hasRight("Extract")

	Returns:
	true if the document can have its text and/or images extracted.

	
writeAsTIFF

public void writeAsTIFF(OutputStream out,
 int dpi,
 ColorModel model)
 throws IOException

 Convert the PDF to a TIFF image using the specified ColorModel and dots per inch.
 For example, to convert the PDF to a black and white TIFF, try:

 PDFParser parser = new PDFParser(pdf);
 FileOutputStream out = new FileOutputStream("out.tif");
 parser.writeAsTIFF(out, 72, PDFParser.BLACKANDWHITE);
 out.close();

 The ColorModel determines what type of TIFF is created and what sort of compression is used.
 For instance, passing in a 2-bit black & white model will result in a black & white TIFF
 compressed with CCITT Group 4 compression. If the specified model returns
 Transparency.TRANSLUCENT from ColorModel.getTransparency() then the TIFF will be
 written with alpha values and created with a transparent background, otherwise the TIFF will
 have a white background set and will be written without alpha-values. Note that specifying a
 model that doesn't match the model of the PDF causes color conversions to be applied, which
 can be quite a slow process.

 You can create TIFF images that have less then all the pages of the PDF by manipulating the the PDF's
 page list before saving. Say for example you want to create 10 single-page TIFF images from your
 10-page PDF document. Here's how:

 List copy = new ArrayList(pdf.getPages());
 for (int i=0;i<copy.size();i++) {
 pdf.getPages().clear();
 pdf.getPages().add(copy.get(i));
 pdf.writeAsTIFF(out[i], dpi, model);
 }

 Parallel Operation Note: Since 2.10, this method can optionally run
 multiple threads in parallel to speed up writing. To enable this, set the
 Threads.TIFF property (typically by setting the
 org.faceless.pdf2.Threads.TIFF System property)
 to the number of threads you want to use. Note that each thread may require
 significant amount of memory - how much depends on the content of each page,
 so it's very difficult to determine in advance. Carefully tune this value yourself
 based on the amount of memory in your system and the type of documents you're working
 with in order to avoid an OutOfMemoryError.

	Parameters:
	out - The OutputStream to write the TIFF to. The stream will be left open on completion
	dpi - how many dots per inch to view the page. A value of 72 gives in 1 point per pixel. As a special hack for those creating Class F TIFF images, a DPI of -1 gives a 204x196 DPI image and -2 gives 204x96 DPI (these added in 2.6.9).
	model - the ColorModel to use to render the images.
	Throws:
	IOException - if an exception is encountered when writing the TIFF
	See Also:
	BLACKANDWHITE,
RGB,
CMYK,
getBlackAndWhiteColorModel(int)

	
writeAsTIFF

public void writeAsTIFF(OutputStream out,
 int dpi,
 ColorModel model,
 RenderingHints hints)
 throws IOException

As for writeAsTIFF(OutputStream,int,ColorModel) but allows the user to
 set RenderingHints to control the rendering process.

	Parameters:
	out - The OutputStream to write the TIFF to. The stream will be left open on completion
	dpi - how many dots per inch to view the page. A value of 72 gives in 1 point per pixel. As a special hack for those creating Class F TIFF images, a DPI of -1 gives a 204x196 DPI image and -2 gives 204x96 DPI (these added in 2.6.9).
	model - the ColorModel to use to render the images.
	hints - the RenderingHints to be used when rendering the image, or null to
 use the defaults.
	Throws:
	IOException - if an exception is encountered when writing the TIFF
	Since:
	2.6.3
	See Also:
	BLACKANDWHITE,
RGB,
CMYK,
getBlackAndWhiteColorModel(int)

	
getWriteAsTIFFProgress

public float getWriteAsTIFFProgress()

Get the progress of the writeAsTIFF() method running in a different
 thread. The returned value will start at 0 and move towards 1 as the write progresses.

	Since:
	2.8

	
setOutputProfile

public void setOutputProfile(OutputProfile profile)

Set the OutputProfile which should be updated for any extraction or rendering
 performed with this PDFParser. This will not give the full PDF OutputProfile
 (for that you should call PDF.getFullOutputProfile()) but it can be used
 to determine some of which features apply to particular pages.

	Since:
	2.11.25

	
getNumberOfPages

public int getNumberOfPages()

Return the number of pages in the document being parsed.
 Needed for the Pageable interface, this method just
 calls PDF.getNumberOfPages()

	Specified by:
	getNumberOfPages in interface Pageable
	Returns:
	the number of pages in the document being parsed

	
getPageFormat

public PageFormat getPageFormat(int pagenumber)

Returns the PageFormat for the specified page.

	Specified by:
	getPageFormat in interface Pageable
	Parameters:
	pagenumber - the page to select, from 0 to PDF.getNumberOfPages()
	Returns:
	the PageFormat for page at index pagenumber

	
getPrintable

public Printable getPrintable(int pagenumber)

Returns the Printable interface for a page.
 Needed for the Pageable interface, this method just
 calls getPagePainter(int)

	Specified by:
	getPrintable in interface Pageable
	Parameters:
	pagenumber - the page to select, from 0 to PDF.getNumberOfPages()
	Returns:
	the Printable object for the specified page

	
getLuceneDocument

public org.apache.lucene.document.Document getLuceneDocument(boolean createall,
 boolean createbody,
 boolean createpages)

 Create a Document object for indexing the PDF with the
 Apache Lucene full-text indexing library.
 The Document is created with Field objects representing the content of
 the PDF, the info dictionary, the form and any annotations that may be there.
 The fields are called:

 	body	The contents of all the pages in the PDF
	page.n	The contents of page n of the PDF
	info.field	The contents of the field field of the Info dictionary - eg. info.Title
	info	The contents of the whole Info dictionary as one item
	form.field	The contents of the field field of the Form
	form	The contents of the whole Form as one item
	annotations	The contents of all the annotations in the document as one item
	all	All the fields above concatenated into one big field - useful for searching the entire textual content of the PDF in one go

 Because creating indices for all, body and page.n
 is usually redundant (typically you will want only one of them), they can be turned on or off individually
 by setting the appropriate parameter to true or false.

	Parameters:
	createall - whether to create an all entry in the index
	createbody - whether to create an body entry in the index
	createpages - whether to create the page.n entries in the index
	Returns:
	a Document suitable for indexing with Lucene.
	Since:
	2.6.2

	
getBlackAndWhiteColorModel

public static ColorModel getBlackAndWhiteColorModel(int threshold)

 Return a Black and White ColorModel that ensures that any colours
 below the specified threshold are converted to black. This method can be
 used to convert images that have shades of gray to black and white TIFF images -
 because it renders the PDF to RGB before manually converting it to Black and White
 it avoids some of the platform dependent behaviour that arises from using
 BLACKANDWHITE, and will probably run faster on many operating systems.

	Parameters:
	threshold - a number between 0 and 255 - typically around 128 or so. Higher
 values result in more black.

 Since 2.11.17 the value "0" can be used to automatically determine the threshold
 value using Otsu's algorithm. This may be appropriate for poor quality
 images.

 Note this ColorModel should only by used in the writeAsTIFF(java.io.OutputStream, int, java.awt.image.ColorModel) method -
 passing it into one of the PagePainter.getImage methods will not
 work

	Since:
	2.6.8
	See Also:
	BLACKANDWHITE,
writeAsTIFF(java.io.OutputStream, int, java.awt.image.ColorModel)

	
getBlackAndWhiteDitheredColorModel

public static ColorModel getBlackAndWhiteDitheredColorModel()

 Return a Black and White ColorModel that performs dithering on pixels.
 Note this ColorModel should only by used in the writeAsTIFF(java.io.OutputStream, int, java.awt.image.ColorModel) method -
 passing it into one of the PagePainter.getImage methods will not
 work

	Since:
	2.18
	See Also:
	BLACKANDWHITE,
writeAsTIFF(java.io.OutputStream, int, java.awt.image.ColorModel)

	
getHtmlDerivation

public HtmlDerivation getHtmlDerivation()

Return a new HtmlDerivation based on this PDFParser

	Returns:
	the HtmlDerivation
	Since:
	2.28.4

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2024 Big Faceless Organization

