

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.3

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class PDFImage

	java.lang.Object
	
	org.faceless.pdf2.PDFImage

	
	All Implemented Interfaces:
	Cloneable

public final class PDFImage
extends Object

 The PDFImage class encapsulates a bitmap image, like a JPEG or PNG file,
 which can be inserted directly into the PDF document. Supported formats
 are:

 	PNG	All except for 16 bit PNG
	JPEG	No restrictions
	GIF	If the GIF is animated, only the first frame is embedded
	TIFF	All variations except old-style JPEG, JBIG, SGI, Thunderscan, Next,
 and Lab images, most of which haven't been seen in years. For multi-page TIFF support see the
 PDFImageSet class.
	PBM, PGM	Only standard 8-bit PBM and PGM images are supported. Support
 was added in version 2.0.6
	JPEG 2000	These can only be displayed in Acrobat 6 or later. Support
 added in version 2.1.1

 PDFPage page = pdf.newPage("A4");
 InputStream in = new FileInputStream("mypicture.jpg");
 PDFImage img = new PDFImage(in);
 in.close();
 page.drawImage(img, 100, 100, 100+i.getWidth(), 100+i.getHeight());

 Images embedded into the document can be stretched to any size, but it's important
 to remember that there is a loss in quality as they're stretched. A thumbnail-size
 image scaled to full page will look bad on a 72dpi screen, and worse on a 600dpi
 printer. See the getWidth() and getPixelWidth() methods for details.

 Embedded ICC Color Profiles will be respected, as are Transparency (supported by the
 GIF, PNG, TIFF and JPEG2000 file formats) and TIFF clipping paths. Note that transparency
 will require Acrobat 5 or later to display the PDF.

 Technical Note. The PDF does not embed the original image file, but instead
 stores the raw bitmap data. If the original bitmap format uses a compression scheme
 that is also used by PDF then it will not need to be recompressed, which will speed
 things up. For that reason, if you have a choice of image format to import try to choose
 one of the following:

 	TIFF images encoded as a single strip of CCITT Group 4 image data and msb-to-lsb FillOrder
	JPEG
	JPEG2000
	TIFF images encoded using new-style JPEG compression
	PNG other than 1-bit indexed PNG or 32-bit (= 24-bit plus alpha channel) PNG images

	Since:
	1.0

	

	

Constructor Summary

Constructors 	Constructor	Description
	PDFImage(byte[] buf)	
Load a PDFimage from a byte array.

	PDFImage(int w,
 int h,
 int bpc,
 double dpix,
 double dpiy,
 boolean photo,
 boolean alpha,
 ColorSpace space,
 InputStream[] planes)	

 Create a PDFImage from the raw bitmap data provided.

	PDFImage(Image img)	
Create a new PDFimage from the specified java.awt.Image.

	PDFImage(Image img,
 String properties)	
Create a new PDFimage from the specified java.awt.Image.

	PDFImage(File in)	
Create a new PDFImage from the specifed File.

	PDFImage(InputStream in)	
Create a new PDFImage from the specifed InputStream.

	PDFImage(URL url)	
Create a new PDFImage from the specifed URL.

	PDFImage(URLConnection con)	
Create a new PDFImage from the specifed URLConnection.

	PDFImage(PDFImage image)	
Create an identical copy of the specified PDFImage.

	

Method Summary

All Methods Instance Methods Concrete Methods Deprecated Methods 	Modifier and Type	Method	Description
	protected Object	clone()	
	void	close()	
Compress the image and close it, preventing any further changes.

	int	getBitsPerComponent()	
Return the bit depth of the image; either 1, 2, 4, 8 or 16

	double	getDPIX()	
Return the dots-per-inch of the image in the X direction (horizontally).

	double	getDPIY()	
Return the dots-per-inch of the image in the Y direction (vertically)
 Not every image contains this information (for example, it's not part of
 the GIF specification), in which case this method returns the default
 resolution of 72, which means 1 pixel = 1 point.

	float	getHeight()	

 Return the height in points of the image.

	ColorSpace	getImageColorSpace()	
Return the ColorSpace of the image, or null if it cannot be determined.

	Reader	getMetaData()	

 Return any XML metadata associated with this object.

	int	getOrientation()	
If the image has a valid EXIF Image Orientation tag, return the value
 of that tag, or 0 if it's invalid or not set.

	int	getPixelHeight()	
Get the height of the image in pixels.

	int	getPixelWidth()	
Get the width of the image in pixels.

	RenderedImage	getRenderedImage()	
Return a RenderedImage from this PDFImage.

	int	getTransparency()	
Return true if the image makes use of transparency.

	float	getWidth()	

 Return the width in points of the image.

	XMP	getXMP()	
Return an XMP Metadata object representing any XM metadata associated wth this object

	boolean	hasDPI()	
Return true if the image has an actual DPI specified.

	boolean	isIndexed()	
Return true if the image uses indexed color (eg GIF or 8-bit PNG), false if it uses full color.

	boolean	isStrictDPIMode()	
Return the value set by setStrictDPIMode(boolean)

	void	putLiteral(String key,
 String tokens)	
Put a literal token sequnce.

	void	quantize()	
Deprecated.
call quantize(256, 0)

	void	quantize(int numcolors,
 int alphaThreshold)	

 Convert a PDFImage to an "Indexed" image, by reducing the number of colors in
 the image to the specified number and storing each color as an index into a color table.

	void	setColorSpace(ColorSpace space)	

 Override the stored ColorSpace in this image.

	void	setMetaData(String xmldata)	
Set the XML metadata associated with this object.

	void	setStrictDPIMode(boolean strictdpi)	
Set the "DPI Mode" to strict.

	String	toString()	

	

Methods inherited from class java.lang.Object

equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

	

	

Constructor Detail

	
PDFImage

public PDFImage(Image img)
 throws InterruptedException

Create a new PDFimage from the specified java.awt.Image.
 The image must be fully loaded, ie. the width and height are known,
 otherwise an IllegalArgumentException is thrown.

	Parameters:
	img - the image to load
	Throws:
	InterruptedException - if the library is unable to read the pixels from
 the image before being interrupted
	IllegalArgumentException - if the image is invalid - ie. the width or height
 is zero or not defined, or if the image is not an embeddable image type

	
PDFImage

public PDFImage(Image img,
 String properties)
 throws InterruptedException

Create a new PDFimage from the specified java.awt.Image.
 The image must be fully loaded, ie. the width and height are known,
 otherwise an IllegalArgumentException is thrown.

	Parameters:
	img - the image to load
	properties - properties that can be specified to modify the way the image
 is encoded. For now value values are "JPEG", "JPEG=nnn" (where nnn is the quality
 between 0 and 100), "JPX" and "JPX=nnn" (where nnn is the quality, ranging from
 about 0.5 to 1.5). These arguments will cause the image to be compressed using
 JPEG or JPEG-2000 compression respectively. Another option is "quantize" which
 will call quantize() on the image after construction
	Throws:
	InterruptedException
	Since:
	2.11.8

	
PDFImage

public PDFImage(byte[] buf)
 throws IOException

Load a PDFimage from a byte array. This method is identical to
 the PDFImage(InputStream) constructor, but takes a byte array
 containing the image as a parameter instead

	Throws:
	IOException
	Since:
	1.2

	
PDFImage

public PDFImage(File in)
 throws IOException

Create a new PDFImage from the specifed File. The file is not loaded in fully from disk,
 and the source file should exist for the life of this PDFImage object.

	Parameters:
	in - the File to read the image from
	Throws:
	IOException - if the method is unable to read or parse the image
	IllegalArgumentException - if the image is invalid or can't be embedded.
	Since:
	2.21

	
PDFImage

public PDFImage(URL url)
 throws IOException

Create a new PDFImage from the specifed URL. If the URL is http or https and the server
 supports the Range header, then only the sections of the image that are required will
 be requested; although the benefits of this are fairly limited for most image types
 except TIFF, as usually the entire file is required.

	Parameters:
	url - the URL to read the image from
	Throws:
	IOException - if the method is unable to read or parse the image
	IllegalArgumentException - if the image is invalid or can't be embedded.
	Since:
	2.21

	
PDFImage

public PDFImage(URLConnection con)
 throws IOException

Create a new PDFImage from the specifed URLConnection. If the URL is http or https and
 the server supports the Range header, then only the sections of the image that are
 required will be requested; although the benefits of this are fairly limited for most image types
 except TIFF, as usually the entire file is required.

	Parameters:
	con - the URLConnection to read the image from
	Throws:
	IOException - if the method is unable to read or parse the image
	IllegalArgumentException - if the image is invalid or can't be embedded.
	Since:
	2.21

	
PDFImage

public PDFImage(InputStream in)
 throws IOException

Create a new PDFImage from the specifed InputStream.
 Note the InputStream is not closed by this constructor - it should be closed by the user

	Parameters:
	in - the InputStream to read the image from
	Throws:
	IOException - if the method is unable to read or parse the image
	IllegalArgumentException - if the image is invalid or can't be embedded.

	
PDFImage

public PDFImage(int w,
 int h,
 int bpc,
 double dpix,
 double dpiy,
 boolean photo,
 boolean alpha,
 ColorSpace space,
 InputStream[] planes)
 throws IOException

 Create a PDFImage from the raw bitmap data provided. The vast majority of
 users will be better off either parsing an encoded image format or calling
 the PDFImage(java.awt.Image) constructor, but for special cases it's possible
 to use this constructor to pass the raw bitmap data in for each plane.

	Parameters:
	w - the width of the image in pixels
	h - the height of the image in pixels
	bpc - the number of bits for each component of the image. Must be 1, 2, 4, 8 or 16 - although 16 is only supported by Acrobat 6 or later.
	dpix - the horizontal dots-per-inch of the image
	dpiy - the vertical dots-per-inch of the image
	photo - for 8 bit images, whether to use JPEG compression instead of the normal Flate compression. For non 8-bit images this has no effect
	alpha - whether or not an alpha plane is being passed in as the last plane
	space - The ColorSpace this image is in. The number of components in the colorspace must match the number of planes passed in.
	planes - The planes of the image. Each InputStream represents a single plane (for example, a CMYK image would have four planes passed in, the first representing Cyan, the second Magenta and so on). Each InputStream must contain w*h*bpc bits of image data in the form of a number of horizontal scanlines starting at the top of the image. Each scanline must start on a byte boundary. Note the InputStreams are not closed by this constructor.
	Throws:
	IOException - if one of the InputStreams throws an IOException while being read, or if one of
 them returns a -1 from it's read() method.
	Since:
	2.2

	
PDFImage

public PDFImage(PDFImage image)

Create an identical copy of the specified PDFImage.
 Usually unnecessary, but useful in the rare case that an image
 is being rendered in multiple threads and also having its properties
 changed - this can include metadata or compression levels

	Since:
	2.20.3

	

Method Detail

	
getWidth

public float getWidth()

 Return the width in points of the image. This may be different to the
 width in pixels, depending on whether the image contains information
 about it's resolution.

	See Also:
	getDPIX()

	
getHeight

public float getHeight()

 Return the height in points of the image. This may be different to the
 height in pixels, depending on whether the image contains information
 about it's resolution.

	See Also:
	getDPIY()

	
getPixelWidth

public int getPixelWidth()

Get the width of the image in pixels.

	Since:
	2.11.5

	
getPixelHeight

public int getPixelHeight()

Get the height of the image in pixels.

	Since:
	2.11.5

	
hasDPI

public boolean hasDPI()

Return true if the image has an actual DPI specified.
 Unfortunately this method is necessary to distinguish
 between (for example) a PNG which specifies 72dpi in
 the image explicitly, and one that defaults to 72dpi.

	Since:
	2.22.1

	
setStrictDPIMode

public void setStrictDPIMode(boolean strictdpi)

Set the "DPI Mode" to strict. This method has come about because the
 HTML spec has relatively recently (2021) introduced a particular
 algorithm for extracting the DPI from bitmap images which is much
 stricter than the one normally used by the PDF API: it's extracted
 from the EXIF tags, so only applies to JPEG (in HTML at least;
 TIFF and JP2 also have EXIF tags, although that's not important to HTML).

 Calling this method immediately after the constructor to set "strict
 mode" will ensure that the same rules are used as for HTML. There's
 no physical change to the image, but it may change the values returned
 from hasDPI(), getDPIX() and getWidth(), as well as
 the corresponding vertical values.

	Since:
	2.26.4

	
isStrictDPIMode

public boolean isStrictDPIMode()

Return the value set by setStrictDPIMode(boolean)

	Since:
	2.26.4

	
getOrientation

public int getOrientation()

If the image has a valid EXIF Image Orientation tag, return the value
 of that tag, or 0 if it's invalid or not set.

	Since:
	2.22.1

	
getDPIX

public double getDPIX()

Return the dots-per-inch of the image in the X direction (horizontally).
 Not every image contains this information (for example, it's not part of
 the GIF specification), in which case this method returns the default
 resolution of 72, which means 1 pixel = 1 point.

	Since:
	1.2

	
getDPIY

public double getDPIY()

Return the dots-per-inch of the image in the Y direction (vertically)
 Not every image contains this information (for example, it's not part of
 the GIF specification), in which case this method returns the default
 resolution of 72, which means 1 pixel = 1 point.

	Since:
	1.2

	
getBitsPerComponent

public int getBitsPerComponent()

Return the bit depth of the image; either 1, 2, 4, 8 or 16

	Since:
	2.22.2

	
isIndexed

public boolean isIndexed()

Return true if the image uses indexed color (eg GIF or 8-bit PNG), false if it uses full color.
 For grayscale images this is arbitrary.

	Returns:
	true if the image is indexed.
	Since:
	2.27.1
	See Also:
	getImageColorSpace(),
#isTranslucent,
quantize()

	
getTransparency

public int getTransparency()

Return true if the image makes use of transparency. If the image is Indexed (see isIndexed())
 this is done by marking an entry in the color index as fully transparent, which is allowed in PDF/A-1.
 If the image is not indexed, the transparency is done by masking the image - pixels
 can be fully transparent, fully opaque or anywhere in-between. This is not allowed in PDF/A-1.

	Returns:
	Transparency.OPAQUE, Transparency.BITMASK or Transparency.TRANSLUCENT
	Since:
	2.27.1
	See Also:
	getImageColorSpace(),
isIndexed()

	
setMetaData

public void setMetaData(String xmldata)

Set the XML metadata associated with this object.
 Since 2.26 this method
 calls getXMP().read(new StringReader(xmldata == null ? "" : xmldata)).
 We strongly recommend using the getXMP() method and modifying the XMP directly
 rather than using this method.

	Parameters:
	xmldata - the XML data to embed into the document, or null
 to clear any existing metadata. No validation is performed on this input.
	Since:
	1.1.12
	See Also:
	getXMP()

	
getMetaData

public Reader getMetaData()
 throws IOException

 Return any XML metadata associated with this object.

 Note that JPEG2000 images may have more than one MetaData stream embedded in
 them. If this is the case, in order to present only a single root node to the
 XML Parser, the XML objects are all wrapped in a single <JPEG2000> node

 Since 2.26 this simply returns getXMP().isEmpty() ? null : new StringReader(getXMP().toString()).
 It is strongly recommended that any code migrates to using the getXMP() method.

 Since 2.24.3, the returned type is guaranteed to hava a toString() method that
 will return the Metadata as a String.

	Returns:
	a Reader containing the source of the XML or null if no metadata is available.
	Throws:
	IOException - if the metadata can't be extracted
	Since:
	1.1.12
	See Also:
	getXMP()

	
getXMP

public XMP getXMP()

Return an XMP Metadata object representing any XM metadata associated wth this object

	Returns:
	the XMP, which may be empty or invalid but will never be null
	Since:
	2.26

	
close

public void close()

Compress the image and close it, preventing any further changes. Unless you're
 going to add MetaData to the image, it's always a good idea to call this
 method so you can claw back some memory.

	Since:
	2.0
	See Also:
	Cache

	
quantize

public void quantize()

Deprecated.
call quantize(256, 0)

Calls quantize(256,0)

	Since:
	2.11.22

	
quantize

public void quantize(int numcolors,
 int alphaThreshold)

 Convert a PDFImage to an "Indexed" image, by reducing the number of colors in
 the image to the specified number and storing each color as an index into a color table. This
 operation isn't quick, but for some types of image it can reduce the filesize
 with little or no loss of quality.

 For RGB source images it's typically better to do this in the image file - PNG
 and TIFF images can store indexed RGB data and GIF is always indexed - and for
 grayscale there's no benefit. However for CMYK images this method can make a
 significant difference.

	Parameters:
	numcolors - the number of colors to quantize to - must be a power of 2, and is almost always 256.
	alphaThreshold - if non-zero, any alpha values less than this amount will be treated as zero, and
 values greater will be treated as one.
 This will allow the image to be used with PDF/A-1 documents that disallow translucency, but it may result
 in visible shifts if the image makes use of translucent pixels. Use with caution and verify the results.
 Should typically be 128 - higher values will result in more transparency, lower values in less transparency.
	Since:
	2.27.1
	See Also:
	isIndexed()

	
getImageColorSpace

public ColorSpace getImageColorSpace()

Return the ColorSpace of the image, or null if it cannot be determined.
 If the ColorSpace is device-dependent, it will be one of:
 	ColorSpace.getColorSpace(ColorSpace.CS_sRGB)
	CMYKColorSpace
	A private ColorSpace class with type TYPE_GRAY

 And if the ColorSpace is Calibrated it will be one of
 	ICCColorSpace
	LabColorSpace
	A private ColorSpace class with type TYPE_RGB

 It may also be a instance of DeviceNColorSpace.
 If the returned value is null, the image is either an Image Mask
 indended to be drawn in the current color, or a JPEG2000 image
 with an unrecognised ColorSpace, in which case it probably can't
 be used with PDF anyway.

	Since:
	2.23.3

	
setColorSpace

public void setColorSpace(ColorSpace space)

 Override the stored ColorSpace in this image. This may be necessary if the
 image has been saved with a particular ColorSpace which doesn't match the
 sRGB space used by Java. Typically this manifests itself
 by a shift to red or blue in the image when the PDF containing it is opened
 in Acrobat (a result of the image whitepoint being hotter or colder respectively than D65).

 The supplied ColorSpace should match the number of components as the current colorspace.
 If it doesn't, the image will be converted to the new ColorSpace (this is new in 2.25.1;
 prior to that release, an IllegalArgumentException would be thrown in this situation)

	Parameters:
	space - the ColorSpace to set the image to. A value of null
 will cause the image to use device-dependent color, and a value of
 Color.red.getColorSpace() will set the image to sRGB.
 In practice this is the same thing.
	Since:
	2.11.8

	
getRenderedImage

public RenderedImage getRenderedImage()
 throws IOException

Return a RenderedImage from this PDFImage.

	Throws:
	IOException - if the image cannot be decoded
	Since:
	2.11.8

	
toString

public String toString()

	
putLiteral

public void putLiteral(String key,
 String tokens)

Put a literal token sequnce. For debugging

	Parameters:
	key - the key
	tokens - the token sequence, eg "true" or "/foo" or "[/Foo/Bar]". No refs, just direct objects.

	
clone

protected Object clone()

	Overrides:
	clone in class Object

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.3

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2023 Big Faceless Organization

