

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.3

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class EncryptionHandler

	java.lang.Object
	
	org.faceless.pdf2.EncryptionHandler

	
	All Implemented Interfaces:
	Cloneable

	Direct Known Subclasses:
	PublicKeyEncryptionHandler, StandardEncryptionHandler

public abstract class EncryptionHandler
extends Object
implements Cloneable

 An EncryptionHandler is the abstract superclass of all algorithms
 that are used to encrypt a PDF document before saving. Encryption
 is required to enforce any sorts of restriction on a PDF, whether
 it be that it requires a password to open, it can only be opened
 by a user posessing a certain private key, or just that it can't
 be printed or altered.

 Although currently the PDF library is only supplied with a single
 implementation of this class (the StandardEncryptionHandler),
 it is possible for end-users to implement their own versions of
 this class to allow PDF's to be created for custom encryption handlers,
 such as might be required for e-Books (for example).

 The following information is for those who will be creating a concrete
 implementation of this class.

 When encrypting, the PDF.render(java.io.OutputStream) method will call the prepareToEncrypt() method,
 followed by n number of calls to getEncryptionStream(java.io.OutputStream, int, int) and finally followed by
 a call to finishedEncrypt() (the decryption process is the same, except substitute the
 word "Decrypt" for Encrypt in the method names above).

 The two prepare... methods can store and retrieve values out
 of the Encrypt dictionary by calling the various get... and put...
 methods. These methods expect the key to be specified as a String. At it's simplest, a
 method call like putNameValue("Filter", "Standard") would create a PDF Name object
 called "Filter" in the Encrypt dictionary. For nested objects, Arrays and Dictionary objects
 can be referenced by placing a "." between field names. For example, "MyArray.2.Name" references
 the object called "Name" in the Dictionary which is the second entry in the "MyArray" array of
 the Encrypt dictionary. All objects added this way are "direct" - it is not
 possible to add indirect objects to the encryption dictionary or it's children.

 An EncryptionHandler may be used for both decryption and encryption if the document is read and
 then written again, so it's important that any values read from the Encrypt dictionary during
 the prepareToDecrypt() method are available to be reused in the prepareToEncrypt()
 method.

 Finally, care needs to be taken about any references to Object instances when an instance
 is cloned - which it will be when a PDF containing an EncryptionHandler is cloned.

	Since:
	2.0
	See Also:
	PDF.setEncryptionHandler(org.faceless.pdf2.EncryptionHandler),
PDFReader(InputStream, EncryptionHandler)

	

	

Constructor Summary

Constructors 	Modifier	Constructor	Description
	protected 	EncryptionHandler()	

	

Method Summary

All Methods Instance Methods Abstract Methods Concrete Methods 	Modifier and Type	Method	Description
	Object	clone()	
	protected boolean	containsKey(String key)	
Return true if the Encrypt dictionary contains the specified key

	abstract void	finishedDecrypt()	
This method is called after the PDF has been read.

	abstract void	finishedEncrypt()	
This method is called after the PDF has been written.

	protected int	getArrayValueSize(String key)	
Return the size of the specified Array from the Encrypt dictionary,
 or -1 if no such field exists

	protected boolean	getBooleanValue(String key)	
Return a Boolean from the Encrypt dictionary as a boolean
 or false if no such field exists

	int	getDecryptedStreamLength(int length)	
Return the length that an encrypted stream o the specified length would be after decryption.

	abstract InputStream	getDecryptionStream(InputStream in,
 int object,
 int generation)	
Return a FilterInputStream that will decrypt anything read
 from it.

	protected Set<String>	getDictionaryValueKeys(String key)	
Return the Set of keys of the specified Dictionary from the Encrypt dictionary,
 or null if no such field exists.

	int	getEncryptedStreamLength(int length)	
Return the length that a stream of the specified length would be after encryption.

	abstract OutputStream	getEncryptionStream(OutputStream out,
 int object,
 int generation)	
Return a FilterOutputStream that will encrypt anything written
 to it.

	protected byte[]	getFileId()	
This method returns the the file ID of the document, as set by setFileId(byte[]).

	abstract String	getFilterName()	
Return the name of the "Filter" field in the Encryption dictionary.

	protected int	getIntegerValue(String key)	
Return a Number from the Encrypt dictionary as an integer
 or 0 if no such field exists

	protected String	getNameValue(String key)	
Return a Name from the Encrypt dictionary as a String
 or null if no such field exists

	protected float	getNumericValue(String key)	
Return a Number from the Encrypt dictionary as a float
 or Float.NaN if no such field exists

	protected byte[]	getStringValue(String key)	
Return a String from the Encrypt dictionary as a byte array
 or null if no such field exists

	abstract String	getSubFilterName()	
Return the name of the "Subfilter" field in the Encryption dictionary.

	protected String	getTextStringValue(String key)	
Return a Text String from the Encrypt dictionary as a String
 or null if no such field exists

	boolean	hasRight(String right)	
Returns true if the EncryptionHandler wil grant the specified right to the
 PDF library.

	boolean	isChanged()	
Return true if the PDF has been marked as changed

	boolean	isEmbeddedFileEncrypted()	
This method returns true if Embedded Files in the document should be stored encrypted.

	boolean	isMetadataEncrypted()	
This method returns true if XMP MetaData should be stored encrypted, or false
 otherwise.

	abstract boolean	isRequired()	
This method should return true if the document needs to be encrypted.

	boolean	isStreamEncrypted()	
This method returns true if Streams in the document should be stored encrypted.

	boolean	isStringEncrypted()	
This method returns true if Strings in the document should be stored encrypted.

	protected void	markChanged()	
This method should be called whenever a field in the EncryptionHandler is changed
 so that the encryption would be changed.

	abstract void	prepareToDecrypt()	
This method is called just before the PDF is read in.

	abstract void	prepareToEncrypt()	
This method is called when the PDF is about to be written out.

	protected void	putArrayValue(String key)	
Add (or replace) an Array to the Encrypt dictionary.

	protected void	putBooleanValue(String key,
 boolean val)	
Add (or replace) a Boolean to the Encrypt dictionary.

	protected void	putDictionaryValue(String key)	
Add (or replace) a Dictionary to the Encrypt dictionary.

	protected void	putNameValue(String key,
 String val)	
Add (or replace) a Name to the Encrypt dictionary.

	protected void	putNumericValue(String key,
 float val)	
Add (or replace) a Number to the Encrypt dictionary.

	protected void	putStringValue(String key,
 byte[] val)	
Add (or replace) a String to the Encrypt dictionary.

	protected void	putTextStringValue(String key,
 String val)	
Add (or replace) a Text String to the Encrypt dictionary.

	void	setFileId(byte[] in)	
This method is called to set the file ID of the document.

	

Methods inherited from class java.lang.Object

equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

	

	

Constructor Detail

	
EncryptionHandler

protected EncryptionHandler()

	

Method Detail

	
getFilterName

public abstract String getFilterName()

Return the name of the "Filter" field in the Encryption dictionary. This is used to
 determine whether an appropriate filter has been supplied by the decryption process. For
 example, the StandardEncryptionHandler class returns "Standard" from this method.

	
getSubFilterName

public abstract String getSubFilterName()

Return the name of the "Subfilter" field in the Encryption dictionary. This is used to
 determine whether an appropriate filter has been supplied by the decryption process. As
 "Subfilter" is an optional field, this method may return null.

	
getEncryptionStream

public abstract OutputStream getEncryptionStream(OutputStream out,
 int object,
 int generation)

Return a FilterOutputStream that will encrypt anything written
 to it. The encryption parameters are set in prepareToEncrypt(),
 which is called once at the start of the render.

	Parameters:
	out - the OuptutStream that should be written to
	object - the object number of the top-level object
	generation - the generation number of the top-level object

	
getDecryptionStream

public abstract InputStream getDecryptionStream(InputStream in,
 int object,
 int generation)

Return a FilterInputStream that will decrypt anything read
 from it. The decryption parameters are set in prepareToDecrypt(),
 which is called once at the start of the PDF read.

	Parameters:
	in - the InputStream that should be read from
	object - the object number of the top-level object
	generation - the generation number of the top-level object

	
getEncryptedStreamLength

public int getEncryptedStreamLength(int length)

Return the length that a stream of the specified length would be after encryption. Generally
 this will be the same same as the input length (and that's what this method returns, unless
 overridden), but for some Encryption algorithms like AES, the size may be rounded up to
 the nearest block size.

	Since:
	2.4

	
getDecryptedStreamLength

public int getDecryptedStreamLength(int length)

Return the length that an encrypted stream o the specified length would be after decryption.
 Generally this will be the same as the input length, which is what this method returns unless
 overridden. However for some encryption algorithms like AES the size will be altered. If an
 exact number is known this method should return it, or if it's not possible to deduce the
 decrypted length from the input length this method should return -1.

	Since:
	2.10.3

	
prepareToDecrypt

public abstract void prepareToDecrypt()
 throws IOException

This method is called just before the PDF is read in. It is expected that this method will
 read various parameters from the Encrypt dictionary by way of the various get...
 methods, and use them and the value of getFileId() to set its internal state so that
 it's ready to start decryption. It may throw an IOException if these parameters
 are invalid, in which case the document cannot be read.

	Throws:
	IOException

	
prepareToEncrypt

public abstract void prepareToEncrypt()
 throws IOException

This method is called when the PDF is about to be written out. It is expected that this
 method will write various parameters which have been set by the user to the Encrypt dictionary
 (including the "Filter" field) by way of the various put... methods, and will use
 these and the value of getFileId() to set its internal state so that it's ready to
 start encryption. It may throw an IOException if these parameters are in any
 way invalid, in which case the document cannot be written.

	Throws:
	IOException

	
finishedDecrypt

public abstract void finishedDecrypt()

This method is called after the PDF has been read. It may be used to clean up any internal
 state that needs to be cleaned.

	
finishedEncrypt

public abstract void finishedEncrypt()

This method is called after the PDF has been written. It may be used to clean
 up any internal state that needs to be cleaned.

	
isRequired

public abstract boolean isRequired()

This method should return true if the document needs to be encrypted.
 For example, the StandardEncryptionHandler returns false here
 if and only if no passwords are set and the document is set to allow full access.

	
isMetadataEncrypted

public boolean isMetadataEncrypted()

This method returns true if XMP MetaData should be stored encrypted, or false
 otherwise. The default implementation returns true, subclasses should override
 as necessary.

	Since:
	2.8.2

	
isStringEncrypted

public boolean isStringEncrypted()

This method returns true if Strings in the document should be stored encrypted.
 By default this method returns true.

	Since:
	2.10.3

	
isStreamEncrypted

public boolean isStreamEncrypted()

This method returns true if Streams in the document should be stored encrypted.
 By default this method returns true.

	Since:
	2.10.3

	
isEmbeddedFileEncrypted

public boolean isEmbeddedFileEncrypted()

This method returns true if Embedded Files in the document should be stored encrypted.
 By default this method returns true.

	Since:
	2.10.3

	
markChanged

protected void markChanged()

This method should be called whenever a field in the EncryptionHandler is changed
 so that the encryption would be changed. This method is required because documents
 that are both digitally signed and encrypted cannot have their encryption
 changed without invalidating the signature. When this method is called, if the
 document contains any signed signatures an IllegalStateException is called

	Throws:
	IllegalStateException - if the document has any digital signatures that would
 be invalidated by this change
	Since:
	2.4

	
isChanged

public boolean isChanged()

Return true if the PDF has been marked as changed

	Since:
	2.18.2
	See Also:
	markChanged()

	
setFileId

public void setFileId(byte[] in)

This method is called to set the file ID of the document.

	
hasRight

public boolean hasRight(String right)

Returns true if the EncryptionHandler wil grant the specified right to the
 PDF library. The default implementation of this method returns true, but
 subclasses will override this method based on the rights applied to the
 document. This method should always return super.hasRight()
 if it doesn't recognise the value of "right"

	Parameters:
	right - an interned() String defining the usage right the PDF library
 is querying.
	Since:
	2.8.2

	
getFileId

protected byte[] getFileId()

This method returns the the file ID of the document, as set by setFileId(byte[]).

	
clone

public Object clone()

	Overrides:
	clone in class Object

	
containsKey

protected boolean containsKey(String key)

Return true if the Encrypt dictionary contains the specified key

	
getStringValue

protected byte[] getStringValue(String key)

Return a String from the Encrypt dictionary as a byte array
 or null if no such field exists

	
getTextStringValue

protected String getTextStringValue(String key)

Return a Text String from the Encrypt dictionary as a String
 or null if no such field exists

	
getNameValue

protected String getNameValue(String key)

Return a Name from the Encrypt dictionary as a String
 or null if no such field exists

	
getNumericValue

protected float getNumericValue(String key)

Return a Number from the Encrypt dictionary as a float
 or Float.NaN if no such field exists

	
getIntegerValue

protected int getIntegerValue(String key)

Return a Number from the Encrypt dictionary as an integer
 or 0 if no such field exists

	
getBooleanValue

protected boolean getBooleanValue(String key)

Return a Boolean from the Encrypt dictionary as a boolean
 or false if no such field exists

	
getArrayValueSize

protected int getArrayValueSize(String key)

Return the size of the specified Array from the Encrypt dictionary,
 or -1 if no such field exists

	
getDictionaryValueKeys

protected Set<String> getDictionaryValueKeys(String key)

Return the Set of keys of the specified Dictionary from the Encrypt dictionary,
 or null if no such field exists.

	
putStringValue

protected void putStringValue(String key,
 byte[] val)

Add (or replace) a String to the Encrypt dictionary.
 A value of null removes the entry.

	
putTextStringValue

protected void putTextStringValue(String key,
 String val)

Add (or replace) a Text String to the Encrypt dictionary.
 A value of null removes the entry

	
putNumericValue

protected void putNumericValue(String key,
 float val)

Add (or replace) a Number to the Encrypt dictionary.
 A value of Float.NaN removes the entry.

	
putNameValue

protected void putNameValue(String key,
 String val)

Add (or replace) a Name to the Encrypt dictionary.
 A value of null removes the entry.

	
putBooleanValue

protected void putBooleanValue(String key,
 boolean val)

Add (or replace) a Boolean to the Encrypt dictionary.
 A value of null removes the entry.

	
putArrayValue

protected void putArrayValue(String key)

Add (or replace) an Array to the Encrypt dictionary.

	
putDictionaryValue

protected void putDictionaryValue(String key)

Add (or replace) a Dictionary to the Encrypt dictionary.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.3

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2023 Big Faceless Organization

