

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class FormSignature

	java.lang.Object
	
	org.faceless.pdf2.FormElement
	
	org.faceless.pdf2.FormSignature

	
	All Implemented Interfaces:
	Cloneable

public class FormSignature
extends FormElement

 This class represents a public key "Digital Signature" which can be used
 to sign a PDF document. Signatures from existing documents can be
 verified and new signatures can be added.

 Signatures may be applied and verified using the full version of Acrobat, but
 not Acrobat Reader. Verifying or creating a Signature requires a "Handler",
 both in our library and Acrobat. Acrobat 4 and 5 had "self-signed" signatures, and
 a plugin from VeriSign was available, but Acrobat 6 and later are supplied with a
 handler supporting full key management. Signatures targeting this handler can be
 created using an AcrobatSignatureHandlerFactory.

 Since version 2.0, the framework is in place to allow custom signature handlers
 to be written. This means that with the right SignatureHandler, the
 library can be used to create or verify any type of digital signature. The library is
 distributed with the AcrobatSignatureHandlerFactory, which we recommend using,
 as well as the older HANDLER_VERISIGN and HANDLER_SELFSIGN factories.
 All of these handlers use the standard KeyStore class
 supplied with Java, and do not necessarily need any third party libraries to work.

 A feature of PDF is that only a single STATE_PENDING signature can be applied
 to a PDF - ie. when saving a document, only a single signature may be applied. If multiple
 signatures must be applied then another signature may be added and the PDF saved again.

 So how do you use this class? The following examples show how to sign and
 verify documents using the supplied signature handlers.

 Verifying existing signatures

 To verify a document has been signed and not altered since signing, and
 to be sure of the signatory, three steps are required. These three steps
 apply to any type of digital signature, not just PKI (Public Key Infrastuction)
 signatures, but for these examples we'll focus on the PKI signatures only.

 	You must verify that content of the document matches the signature
	You must verify that the signature covers the whole document
	You must verify that the key used to sign the document belongs to who it says it does

 First, verifying that the signature matches the document content is done
 using the verify() method. This can be done like so:

 PDF pdf = new PDF(new PDFReader(new FileInputStream(args[0])));
 Map elements = pdf.getForm().getElements();
 for (Iterator i=elements.values().iterator(); i.hasNext();) {
 FormElement e = (FormElement)i.next();
 if (e instanceof FormSignature && ((FormSignature)e).verify()) {
 System.out.println("Signature from "+sig.getName()+" matches PDF checksum");
 }
 }

 Second, you must verify that the signature covers the latest revision of the
 document - otherwise the document could have been altered after signing (see the
 PDFReader class documentation for more information about revisions). To
 verify the signature covers the latest revision, you need to compare the value of
 PDF.getNumberOfRevisions() with the value of getNumberOfRevisionsCovered().
 Something like this should do it:

 int pdfrevision = pdf.getNumberOfRevisions();
 int sigrevision = signature.getNumberOfRevisionsCovered();
 if (pdfrevision == sigrevision) {
 System.out.println("Whole document is covered");
 }

 At this point you know the signature covers the whole document, and that the
 document hasn't been changed since signing. You then need to confirm that the PDF
 really was signed by the name on the signature. The handlers supplied with this
 library are all based on PKCS#7, and contain a chain of X.509 certificates which
 should be verified. A full discussion of Public Key Infrastructure could fill a
 book in itself, so instead we'll show you how to get the certificates and how to
 verify them against a keystore.

 Each Java distribution comes with a list of CA certificates which are used to verify
 signed JAR files, but if your signature is signed by one of those CA's we can also
 use it to verify the signature (if not, you can supply your own keystore with CA
 certificates - the principle is the same). The certificates are accessed via the
 PKCS7SignatureHandler.getCertificates() method, and the
 isValidCertificate method used to perform some basic
 validation if you want to check the certificates yourself. Here we use the
 verifyCertificates method to confirm the certificates
 are valid and signed by a CA:

 PDF pdf = new PDF(new PDFReader(new FileInputStream(args[0])));
 KeyStore ca = FormSignature.loadDefaultKeyStore(); // Load CA certificates

 for (Iterator i=pdf.getForm().getElements().values().iterator(); i.hasNext();) {
 FormElement e = (FormElement)i.next();
 if (e instanceof FormSignature) {
 FormSignature sig = (FormSignature)e;
 if (sig.getSignatureHandler() instanceof PKCS7SignatureHandler) {
 PKCS7SignatureHandler handler = (PKCS7SignatureHandler)sig.getSignatureHandler();
 Calender when = sig.getSignDate();
 X509Certificate[] certs = handler.getCertificates();
 if (FormSignature.verifyCertificates(certs, ca, null, when) == null) {
 System.out.println("Certificates for "+sig.getName()+" verified");
 }
 } else {
 System.out.println("Not a PKCS#7 public-key signature!");
 }
 }
 }

 Signing documents

 A single signature can be applied to a PDF document by adding the signature
 to the PDF documents Form. Here's an example:

 PDF pdf = new PDF();
 pdf.newPage("A4");

 KeyStore keystore = loadMyKeyStore(); // Somehow load a keystore
 String alias = "mykey";
 char[] password = "secret".toCharArray();
 SignatureHandlerFactory factory = new AcrobatSignatureHandlerFactory();
 FormSignature sig = new FormSignature(keystore, alias, password, factory);
 pdf.getForm().addElement("Test Signature", sig);

 This slightly oversimplified example demonstrates two things. One, that the
 private key and its associated certificates used to sign a document must be
 loaded from a KeyStore, and two, that you must specify the signature
 handler that will be used to verify the document in Acrobat.

 Since Acrobat 6.0, theoretically any PKCS#7 signature can be verified without
 an external plugin - simply use the AcrobatSignatureHandlerFactory factory.
 Prior to Acrobat 6, the situation is more complex - you must create a signature for
 a specific handler (typically using HANDLER_SELFSIGN or HANDLER_VERISIGN).

 Finally to get you started, here is a complete example showing how to create
 a PDF that can be verified in Acrobat 6.0 or later. Rather than type
 all this out we suggest you take a look at the "Sign.java" example supplied
 with the package, which does all this and more.

 	
 Create a self-signed key using the "keytool" program supplied with the JDK.
 The following command will create a 1024-bit RSA key plus certificate in
 the file "mykeystore". You'll be prompted for a password.

 keytool -genkey -alias mykey -keyalg RSA -sigalg MD5withRSA \
 -keystore mykeystore.jks -dname 'C=UK, O=YourOrganization, CN=YourName'

	

 The following code can be used to create a blank PDF which is digitally
 signed with this key.

 import java.security.KeyStore;
 import java.io.*;
 import org.faceless.pdf2.*;

 public static void TestSign {
 static final String KEYFILE = "mykeystore.jks"; // Keystore filename
 static final String KEYALIAS = "mykey"; // Alias for private key
 static final char[] PASSWORD = "secret".toCharArray(); // Password

 public static void main(String[] args) throws Exception {
 PDF pdf = new PDF();
 PDFPage page = pdf.newPage("A4");

 KeyStore keystore = KeyStore.getInstance("JKS");
 keystore.load(new FileInputStream(KEYFILE), PASSWORD);
 SignatureHandlerFactory factory = new AcrobatSignatureHandlerFactory();
 FormSignature sig = new FormSignature(keystore, KEYALIAS, PASSWORD, factory);
 pdf.getForm().addElement("Test Signature", sig);

 pdf.render(new FileOutputStream("Signed.pdf"));
 }
 }

	

 Run the program - it creates "Signed.pdf" which can be verified in Acrobat 6.0 or greater.

 java TestSign

 More information on digital signatures is available in the userguide.

	Since:
	1.1.13
	See Also:
	AcrobatSignatureHandlerFactory,
PKCS7SignatureHandler

	

	

Field Summary

Fields 	Modifier and Type	Field	Description
	static int	CERTIFICATION_ALLOWCOMMENTS	
A value that can be passed in to
 setCertificationType(int, java.lang.String) and returned from
 getCertificationType() to indicate that the signature will be a certifying
 signature that allows only commenting and form fill-in actions on the Document.

	static int	CERTIFICATION_ALLOWFORMS	
A value that can be passed in to
 setCertificationType(int, java.lang.String) and returned from
 getCertificationType() to indicate that the signature will be a certifying
 signature that allows only form fill-in actions on the Document.

	static int	CERTIFICATION_NOCHANGES	
A value that can be passed in to
 setCertificationType(int, java.lang.String) and returned from
 getCertificationType() to indicate that the signature will be a certifying
 signature that disallows any changes to the Document.

	static int	CERTIFICATION_UNCERTIFIED	
A value that can be passed in to
 setCertificationType(int, java.lang.String) and returned from
 getCertificationType() to indicate that the signature will not be a
 certifying signature.

	static SignatureHandlerFactory	HANDLER_ACROBATSIX	

 A type of handler representing the general purpose PKI signature plugin
 supplied with Acrobat 6.0 and later.

	static SignatureHandlerFactory	HANDLER_SELFSIGN	
Deprecated.
There is no need to use this handler.

	static SignatureHandlerFactory	HANDLER_VERISIGN	
Deprecated.
There is no need to use this handler.

	static int	STATE_BLANK	
This value is returned from the getState() method if the signature
 field has not been completed yet.

	static int	STATE_PENDING	
This value is returned from the getState() method if the signature is
 "new" - it has been added to the document and is waiting for the document to
 be completed before it is applied.

	static int	STATE_SIGNED	
This value is returned from the getState() method if the signature is
 "old" - the PDF document that was read in was already signed with this
 signature.

	

Constructor Summary

Constructors 	Constructor	Description
	FormSignature()	
Create a new blank digital signature field.

	FormSignature(KeyStore keystore,
 String alias,
 char[] password,
 SignatureHandlerFactory factory)	
Create a new pending digital signature to sign a PDF document.

	

Method Summary

All Methods Static Methods Instance Methods Concrete Methods 	Modifier and Type	Method	Description
	WidgetAnnotation	addAnnotation(PDFPage page,
 float x1,
 float y1,
 float x2,
 float y2)	

 Add an annotation for this Signature to the specified page at the specified
 location.

	WidgetAnnotation	addAnnotation(PDFPage page,
 float x1,
 float y1,
 float x2,
 float y2,
 PDFCanvas appearance)	

 Add an annotation for this Signature to the specified page at the specified
 location, with the specified appearance.

	void	cancelVerify()	
If a verification is currently running, cancel it.

	protected Object	clone()	
	long[]	getByteRangeCovered()	

 Return the bytes of the PDF file covered by this signature.

	int	getCertificationType()	
Return the type of "Certification" this signature attests to.

	String	getContactInfo()	
Return the contact information field for this signature
 if that information is available, or null otherwise.

	String	getFilter()	
Return the name of the digital signature handler used to sign the
 document.

	static String	getIssuerField(X509Certificate cert,
 String field)	

 Return the specified X.500 field from the specified X.509 certificates Issuer.

	String	getLocation()	
Return the location where this document was signed if
 if that information is available, or null otherwise.

	String	getName()	
Get the name of the person or entity that signed this PDF if that information
 is available, or null otherwise.

	int	getNumberOfRevisionsCovered()	
Return the number of document revisions covered by this signature.

	String	getReason()	
Return the reason this signature was applied to the PDF
 if that information is available, or null otherwise.

	URI	getRequiredCertificateFallbackURI()	
Return the URI to be used if the "issuers" and "subjects" Certificate restrictions
 are not met, as set by setRequiredCertificateFallbackURI(java.net.URI), or null
 if none were specified.

	X509Certificate[]	getRequiredCertificateIssuers()	
Return the list of required Issuer certificates as set by
 setRequiredCertificateIssuers(java.security.cert.X509Certificate[]), or null if none were specified.

	X509Certificate[]	getRequiredCertificateSubjects()	
Return the list of required Issuer certificates as set by
 setRequiredCertificateSubjects(java.security.cert.X509Certificate[]), or null if none were specified.

	String[]	getRequiredDigestAlgorithms()	
Return the list of allowable digest algorithms that can be used to sign this signature,
 or null if this is not specified.

	String[]	getRequiredReasons()	
Set the list of reasons that must be chosen from when signing, as set
 by setRequiredReasons(java.lang.String[])

	URI	getRequiredTimestampServer()	
Get the URI of the TimeStamp server that must be used when signing
 as set by setRequiredTimestampServer(java.net.URI), or null
 if none is specified

	SignatureHandler	getSignatureHandler()	
Return the SignatureHandler that is used with this Signature,
 or null if the signature has not been signed yet (ie. the
 state is still STATE_BLANK).

	SignaturePolicy	getSignaturePolicy()	
Return the SignaturePolicy that was previously set by setSignaturePolicy(org.faceless.pdf2.SignaturePolicy)

	Calendar	getSignDate()	
Return the time the signature was applied to the document.

	int	getState()	
Returns the current state of the signature.

	static String	getSubjectField(X509Certificate cert,
 String field)	

 Return the specified X.500 field from the specified X.509 certificates Subject.

	String	getValue()	
As signatures do not have a "value" as such, this method always returns null.

	static boolean	isValidCertificate(X509Certificate cert,
 CRL crl,
 Date signdate)	
Return true if the specified X.509 Certificate is valid for the specified date,
 has not been revoked and has no unknown critical extensions.

	boolean	isVerifying()	
Return true if the verify() method is currently running in another
 thread.

	static KeyStore	loadAKFKeyStore(InputStream in)	

 Load an X.509 certificate from an "Adobe Key File" keystore, the type
 exported from the Adobe Self-Sign signature handler in Acrobat 4.0.

	static KeyStore	loadDefaultKeyStore()	
Return the default Java keystore to validate keys against.

	static KeyStore	loadFDFKeyStore(InputStream in)	

 Load an X.509 certificate from an "Adobe Self-Sign Key" keystore, the type
 exported from the Adobe Self-Sign signature handler in Acrobat 5.0.

	static KeyStore	loadPKCS7KeyStore(InputStream in)	

 Load a list of one or more X.509 certificates from a PKCS#7 file.

	static KeyStore	loadTrustedKeyStore()	

 Return a KeyStore containing various trusted roots that are widely approved by
 national or multi-national bodies.

	void	putLiteral(String key,
 String tokens)	
Put a literal token sequnce.

	void	rebuild()	
Cause the annotation list to be rebuilt.

	static void	registerHandlerForVerification(SignatureHandlerFactory factory)	

 This method must be called to register a new SignatureHandlerFactory
 that can be used when verifying signatures, although it's not necessary
 for handlers that are only used for signing.

	void	setCertificationType(int certificationtype,
 String attestation)	
Causes this signatures be "Certifying" signature when it's signed - also
 known as an "Author" signature..

	void	setContactInfo(String info)	
Set the contact information field for this signature.

	void	setLocation(String location)	
Set the location where the signer is signing the PDF
 document - e.g.

	void	setName(String name)	
Set the name of the person or entity who is applying this signature.

	void	setReason(String reason)	
Set the reason why the the document is being signed -
 e.g.

	void	setRequiredCertificateFallbackURI(URI uri)	
Set the URI the user is directed to if the conditions set by setRequiredCertificateIssuers(java.security.cert.X509Certificate[])
 and setRequiredCertificateSubjects(java.security.cert.X509Certificate[]) are not met.

	void	setRequiredCertificateIssuers(X509Certificate[] certs)	

 Set restrictions on which X.509 Certificates can be used when this (blank) signature
 is eventually signed.

	void	setRequiredCertificateSubjects(X509Certificate[] certs)	
Set restrictions on which X.509 Certificates can be used when this (blank) signature
 is eventually signed.

	void	setRequiredDigestAlgorithms(String[] algorithms)	
Set the list of allowable digest algorithms that can be used to sign this signature,
 or null to remove any existing restrictions.

	void	setRequiredReasons(String[] validreasons)	
Set the list of Reasons from which the user must choose when this (blank) signature
 is eventually signed.

	void	setRequiredTimestampServer(URI uri)	
Set the URI of the TimeStamp server that must be used when this (blank) signature
 is eventually signed.

	void	setSignaturePolicy(SignaturePolicy policy)	

 Set the SignaturePolicy that should be used when validating this Signature.

	void	sign(KeyStore keystore,
 String alias,
 char[] password,
 SignatureHandlerFactory factory)	
Sign a STATE_BLANK digital signature.

	String	toString()	
	boolean	verify()	

 Verify a signature by ensuring that the PDF document hasn't been altered
 since it was signed.

	static X509Certificate	verifyCertificates(X509Certificate[] certs,
 KeyStore keystore,
 CRL crl,
 Calendar signdate)	
Verify a list of X.509 certificates against a list of trusted certificates.

	

Methods inherited from class org.faceless.pdf2.FormElement

addPropertyChangeListener, duplicate, flatten, getAction, getAnnotation, getAnnotations, getDescription, getForm, isReadOnly, isRequired, isSubmitted, removePropertyChangeListener, setAction, setDescription, setReadOnly, setRequired, setSubmitted

	

Methods inherited from class java.lang.Object

equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

	

	

Field Detail

	
CERTIFICATION_UNCERTIFIED

public static final int CERTIFICATION_UNCERTIFIED

A value that can be passed in to
 setCertificationType(int, java.lang.String) and returned from
 getCertificationType() to indicate that the signature will not be a
 certifying signature. This is the default.

	Since:
	2.7.4
	See Also:
	Constant Field Values

	
CERTIFICATION_NOCHANGES

public static final int CERTIFICATION_NOCHANGES

A value that can be passed in to
 setCertificationType(int, java.lang.String) and returned from
 getCertificationType() to indicate that the signature will be a certifying
 signature that disallows any changes to the Document. No legal attestation is
 required in this case, as the document cannot be changed.

	Since:
	2.7.4
	See Also:
	Constant Field Values

	
CERTIFICATION_ALLOWFORMS

public static final int CERTIFICATION_ALLOWFORMS

A value that can be passed in to
 setCertificationType(int, java.lang.String) and returned from
 getCertificationType() to indicate that the signature will be a certifying
 signature that allows only form fill-in actions on the Document. Specifically,
 existing form fields can be modified, but the position of those fields cannot be
 changed, and no fields can be added or deleted (this includes adding new signatures,
 although pre-existing blank signature fields can be signed). Other annotations cannot be
 changed.
 A legal attestation is recommended if this type of certification is used.

	Since:
	2.7.4
	See Also:
	Constant Field Values

	
CERTIFICATION_ALLOWCOMMENTS

public static final int CERTIFICATION_ALLOWCOMMENTS

A value that can be passed in to
 setCertificationType(int, java.lang.String) and returned from
 getCertificationType() to indicate that the signature will be a certifying
 signature that allows only commenting and form fill-in actions on the Document.
 Specifically, existing form fields can have their values modified and the position
 of their annotations can be changed. New signature fields can be added, but other
 types of field cannot and no fields can be deleted. Other types of annotation can
 be added or deleted.
 A legal attestation is recommended if this type of certification is used.

	Since:
	2.7.4
	See Also:
	Constant Field Values

	
HANDLER_SELFSIGN

@Deprecated
public static final SignatureHandlerFactory HANDLER_SELFSIGN

Deprecated.
There is no need to use this handler. Use an AcrobatSignatureHandlerFactory instead.

 A type of handler representing the Adobe "self-sign" signature handler
 supplied with Acrobat 4.x and 5.x. Keys must use the RSA algorithm
 and may be any length (we've tested 512, 1024 and 2048-bit keys).
 Certificates must use the MD5/RSA signature algorithm. Obviously the
 certificate associated with the key must be self-signed, and Acrobat also
 insists that the country code, if specified, must be exactly 2 letters long.

 Self-sign signatures are limited in that only certificates in the viewing
 users "Personal Address Book" are considered to be trusted - a Certifying
 Authority is not used. Certificates may be added to the address book if they're
 not already there, and provided they are confirmed (by manually checking
 the serial number with the issuer), this handler does most of what is required
 of a PKI system.

 Documents signed with this handler can be verifed in Acrobat 4, 5 and 6 out of the box.
 Note that unless you're specifically targeting Acrobat 5.0 or earlier you should
 use HANDLER_ACROBATSIX instead.

	Since:
	2.0 (prior to 2.0 this constant existed, but was an integer)

	
HANDLER_VERISIGN

@Deprecated
public static final SignatureHandlerFactory HANDLER_VERISIGN

Deprecated.
There is no need to use this handler. Use an AcrobatSignatureHandlerFactory instead.

 A type of handler representing the VeriSign "Document Signer" digital
 signature handler available for Acrobat 4.x and 5.x.
 Keys must use the RSA algorithm and may be any length, but must
 be signed by a VeriSign CA key or they will be considered invalid by the
 VeriSign plugin. VeriSign also distribute an "Administrator Tool" which allows you
 to set your own list of trusted certificates, although we haven't tested this
 functionality.

 The plugin itself is available from the
 VeriSign website
 as a free download. Details on how to use and install the plugin are also
 available from this site.

 The VeriSign test certificate we worked with was MD5/RSA, and we expect that all
 keys that work with this plugin must use this algorithm.

 Documents signed with this handler can be verifed in Acrobat 4, 5 with the VeriSign
 plugin, and Acrobat 6 out of the box.
 Note that unless you're specifically targeting Acrobat 5.0 or earlier you should
 use HANDLER_ACROBATSIX instead.

	Since:
	2.0 (prior to 2.0 this constant existed, but was an integer)

	
HANDLER_ACROBATSIX

public static final SignatureHandlerFactory HANDLER_ACROBATSIX

 A type of handler representing the general purpose PKI signature plugin
 supplied with Acrobat 6.0 and later. This handler (which has the Filter name
 "Adobe.PPKLite") is an instanceof of AcrobatSignatureHandlerFactory,
 and while it can be used, for maximum flexiblity we recommend creating
 your own instance of that class and setting whichever options you required.

 Documents signed with this handler can only be verifed in Acrobat 6 or later.
 Unless you're specifically targetting Acrobat 5.0 or earlier, we recommend always using this
 handler instead of HANDLER_SELFSIGN or HANDLER_VERISIGN.

	Since:
	2.0

	
STATE_SIGNED

public static final int STATE_SIGNED

This value is returned from the getState() method if the signature is
 "old" - the PDF document that was read in was already signed with this
 signature. The signature may be validated, but will not be exported again if
 the document is resaved.

	See Also:
	STATE_PENDING,
STATE_BLANK,
getState(),
Constant Field Values

	
STATE_PENDING

public static final int STATE_PENDING

This value is returned from the getState() method if the signature is
 "new" - it has been added to the document and is waiting for the document to
 be completed before it is applied. Only one "pending" signature may currently
 be applied to each document.

	See Also:
	STATE_SIGNED,
STATE_BLANK,
getState(),
Constant Field Values

	
STATE_BLANK

public static final int STATE_BLANK

This value is returned from the getState() method if the signature
 field has not been completed yet. A document may contain more than one blank
 signature fields.

	See Also:
	STATE_SIGNED,
STATE_PENDING,
Constant Field Values

	

Constructor Detail

	
FormSignature

public FormSignature()

Create a new blank digital signature field. The field
 may have a signature applied to it at a later date, either by this library
 or by Acrobat

	Since:
	2.0

	
FormSignature

public FormSignature(KeyStore keystore,
 String alias,
 char[] password,
 SignatureHandlerFactory factory)
 throws GeneralSecurityException,
 IllegalArgumentException

Create a new pending digital signature to sign a PDF document.
 The private key and the certificates used to sign the PDF are contained in the specified
 keystore. This constructor is identical to calling:

 FormSignature sig = new FormSignature();
 sig.sign(keystore, alias, password, factory);

	Parameters:
	keystore - the KeyStore containing the private key and a list of certificates
 to sign the document with
	alias - the alias or "friendly-name" which the private key is stored under
 in the keystore
	password - the password to unlock the private key
	factory - the digital signature handler that will be used to verify the
 signature. Probably one of HANDLER_SELFSIGN or HANDLER_VERISIGN
	Throws:
	GeneralSecurityException - if the keystore, private key, password or certificates are invalid in any way
	IllegalArgumentException - if the arguments are technically correct but will result in an invalid signature for any reason.
	Since:
	2.0 (prior to 2.0 the last parameter was an integer)

	

Method Detail

	
registerHandlerForVerification

public static void registerHandlerForVerification(SignatureHandlerFactory factory)

 This method must be called to register a new SignatureHandlerFactory
 that can be used when verifying signatures, although it's not necessary
 for handlers that are only used for signing.

 When a signature is verified, the appropriate handler is chosen from the list
 of registered handlers by matching the "Filter" and "SubFilter" fields in the
 handler to those in the signature. By default, the HANDLER_VERISIGN,
 HANDLER_SELFSIGN and HANDLER_ACROBATSIX factories are the only
 three that are registered.

	Since:
	2.0

	
addAnnotation

public WidgetAnnotation addAnnotation(PDFPage page,
 float x1,
 float y1,
 float x2,
 float y2)

 Add an annotation for this Signature to the specified page at the specified
 location. Unlike other form elements, it is not necessary for a signature
 to have an annotation - those that don't are called "invisible" signatures in
 Acrobat. The annotation will take on the appearance defined by the
 SignatureHandler.getLayerAppearance() method.

 Note that Acrobat 9 and later will only support one annotation per signature.

	Parameters:
	page - the page to place the annotation on
	x1 - the left-most X co-ordinate of the annotation
	y1 - the top-most Y co-ordinate of the annotation
	x2 - the right-most X co-ordinate of the annotation
	y2 - the bottom-most Y co-ordinate of the annotation
	Returns:
	a new WidgetAnnotation at the specified location
	Since:
	2.0

	
addAnnotation

public WidgetAnnotation addAnnotation(PDFPage page,
 float x1,
 float y1,
 float x2,
 float y2,
 PDFCanvas appearance)

 Add an annotation for this Signature to the specified page at the specified
 location, with the specified appearance.
 Unlike other form elements, it is not necessary for a signature
 to have an annotation - those that don't are called "invisible" signatures in
 Acrobat.

 Note that Acrobat 9 and later will only support one annotation per signature.

	Parameters:
	page - the page to place the annotation on
	x1 - the left-most X co-ordinate of the annotation
	y1 - the top-most Y co-ordinate of the annotation
	x2 - the right-most X co-ordinate of the annotation
	y2 - the bottom-most Y co-ordinate of the annotation
	appearance - the PDFCanvas to use as the primary appearance of the signature.
	Returns:
	a new WidgetAnnotation at the specified location
	Since:
	2.23.5

	
sign

public void sign(KeyStore keystore,
 String alias,
 char[] password,
 SignatureHandlerFactory factory)
 throws GeneralSecurityException,
 IllegalArgumentException

Sign a STATE_BLANK digital signature. The private key and the
 certificates used to sign the PDF are contained in the specified keystore.

	Parameters:
	keystore - the KeyStore containing the private key and a list of certificates
 to sign the document with
	alias - the alias or "friendly-name" which the private key is stored under
 in the keystore
	password - the password to unlock the private key
	factory - the digital signature handler that will be used to verify the
 signature. Probably one of HANDLER_SELFSIGN or HANDLER_VERISIGN
	Throws:
	GeneralSecurityException - if the keystore, private key, password or certificates are invalid in any way
	IllegalArgumentException - if the arguments are technically correct but will result in an invalid signature for any reason.
	Since:
	2.0

	
getState

public int getState()

Returns the current state of the signature. The state is either
 STATE_SIGNED for existing signatures, STATE_PENDING
 for new signatures that have been added, or STATE_BLANK for
 empty signature fields

	
setName

public void setName(String name)

Set the name of the person or entity who is applying this signature.
 Setting this field is recommended but not necessary - for PKCS#7
 signatures, it defaults to the Common Name (CN) of the signing certificate.

	Parameters:
	name - the name of the entity signing the PDF, or null to clear the current name
	Throws:
	IllegalStateException - if this signature is STATE_BLANK

	
getName

public String getName()

Get the name of the person or entity that signed this PDF if that information
 is available, or null otherwise.

	Throws:
	IllegalStateException - if this signature is STATE_BLANK

	
setReason

public void setReason(String reason)

Set the reason why the the document is being signed -
 e.g. "Approved for distribution". This field is optional.

	Parameters:
	reason - the reason the entity is signing the document,
 or null to clear the current reason
	Throws:
	IllegalStateException - if this signature is STATE_BLANK

	
getReason

public String getReason()

Return the reason this signature was applied to the PDF
 if that information is available, or null otherwise.

	Throws:
	IllegalStateException - if this signature is STATE_BLANK

	
setLocation

public void setLocation(String location)

Set the location where the signer is signing the PDF
 document - e.g. "Head Office". This field is optional.

	Parameters:
	location - the location where the entity is signing the document,
 or null to clear the current location
	Throws:
	IllegalStateException - if this signature is STATE_BLANK

	
getLocation

public String getLocation()

Return the location where this document was signed if
 if that information is available, or null otherwise.

	Throws:
	IllegalStateException - if this signature is STATE_BLANK

	
setContactInfo

public void setContactInfo(String info)

Set the contact information field for this signature. This information would
 typically be provided by the signer to enable a recipient to contact
 the signer to verify the signature. This field is optional.

	Parameters:
	info - the contact information for this signature, or null to clear the current value
	Throws:
	IllegalStateException - if this signature is STATE_BLANK
	Since:
	2.7.1

	
getContactInfo

public String getContactInfo()

Return the contact information field for this signature
 if that information is available, or null otherwise.

	Throws:
	IllegalStateException - if this signature is STATE_BLANK
	Since:
	2.7.1

	
getSignDate

public Calendar getSignDate()

Return the time the signature was applied to the document. If the signature
 has been timestamped, this will be the date from the timestamp, otherwise
 it will be the date from the signature dictionary.

	Returns:
	the time the document was signed.
	Throws:
	IllegalStateException - if this signature isn't STATE_SIGNED

	
getFilter

public String getFilter()

Return the name of the digital signature handler used to sign the
 document. This is the value of the "Filter" field from the signature
 handler being used. Values could well be one of "Adobe.PPKLite",
 "VeriSign.PPKVS", "Entrust.PPKEF", "CICI.SignIt", "Gemtools.GemSign"
 or "Silanis.ApproveIt". This method is identical to calling
 getSignatureHandler().getFilter()

	Throws:
	IllegalStateException - if this signature is STATE_BLANK
	Since:
	2.0 (was renamed from "getType" in 1.2.x release)

	
getSignatureHandler

public SignatureHandler getSignatureHandler()

Return the SignatureHandler that is used with this Signature,
 or null if the signature has not been signed yet (ie. the
 state is still STATE_BLANK).

	Since:
	2.0

	
setSignaturePolicy

public void setSignaturePolicy(SignaturePolicy policy)

 Set the SignaturePolicy that should be used when validating this Signature.
 The Signature Policy describes the set of conditions that must for the signature
 to remain valid when the PDF is modified after signing. Setting the policy in the
 signature changes nothing permanent - it just changes the policy that will be used
 the next time verify() is called.

 By default the policy is SignaturePolicy.getDefault(), and unless you have a
 good reason we suggest leaving that unchanged. However if you're trying to reproduce
 a validation that was made several years ago (ie. at the time of signing), an
 alternative policy can be used.

	Since:
	2.28
	See Also:
	SignaturePolicy

	
getSignaturePolicy

public SignaturePolicy getSignaturePolicy()

Return the SignaturePolicy that was previously set by setSignaturePolicy(org.faceless.pdf2.SignaturePolicy)

	Returns:
	the Signature Policy
	Since:
	2.28

	
isVerifying

public boolean isVerifying()

Return true if the verify() method is currently running in another
 thread. verify() is not synchronized (as of 2.28) but can only be
 run in one thread at a time.

	Since:
	2.28
	See Also:
	verify(),
cancelVerify()

	
cancelVerify

public void cancelVerify()

If a verification is currently running, cancel it.
 The verify() method will throw a RuntimeException with
 a cause that is an InterruptedException. If verify is not
 running this method has no effect.

	Since:
	2.28
	See Also:
	verify(),
isVerifying()

	
verify

public boolean verify()
 throws GeneralSecurityException

 Verify a signature by ensuring that the PDF document hasn't been altered
 since it was signed. Only signatures with a state of STATE_SIGNED
 may be verified.

 Calling this method on a Certified signature causes
 additional checks to be run to confirm subsequent changes to the signature
 haven't invalidated the signature - if the signature checksum is valid
 but a subsequent modification to the file was disallowed, this method
 will return false.

 Note that this only ensures the document matches the checksum included in
 the signature object. To completely confirm the document is unaltered the
 signature object must be confirmed to belong to who it says it does. For
 the supplied handlers, this is done by checking the X.509 certificates
 returned by PKCS7SignatureHandler.getCertificates(), either manually or by
 calling the verifyCertificates method.

 Verification is synchronized internally, so before calling this method we
 suggest checking if a verify is already running with isVerifying().
 Verification can be cancelled by calling cancelVerify(). Both these
 methods are new in 2.28

	Returns:
	true if the document is unaltered, false
 if the document has been altered since signing
	Throws:
	IllegalStateException - if the signature you're verifying isn't
 STATE_SIGNED, or if this method is running in another Thread.
	GeneralSecurityException - if the specified signing algorithm is
 unknown, or the certificate or key are invalid
	RuntimeException - wrapping an InterruptedException if the cancelVerify() method was called
 while verifying.
	See Also:
	isVerifying(),
cancelVerify()

	
getNumberOfRevisionsCovered

public int getNumberOfRevisionsCovered()

Return the number of document revisions covered by this signature. A
 PDF document can be revised a number of times - for example, filling
 out a form in Acrobat and saving the document creates a new revision.
 Every revision of the document must be covered by a signature in order
 to be sure of the documents contents. See the PDFReader class
 for more information on document revisions, and the class documentation
 for this class for examples of how to validate a signature using this
 method.

	Returns:
	the number of revisions covered by this signature (always greater
 than or equal to one since version 2.7 of this library) or zero if the
 signature doesn't cover any (in which case it should be discounted)
	Throws:
	IllegalArgumentException - if the signature is not signed yet (ie.
 does not have a state of STATE_SIGNED)
	Since:
	1.2.1

	
getByteRangeCovered

public long[] getByteRangeCovered()

 Return the bytes of the PDF file covered by this signature.
 The returned array is theoretically any multiple of four,
 long, but in practice should always be four bytes, with
 the first byte "0", the second byte the start of the
 signature block - 1, the third byte the end of the signature
 block + 1 and the last byte the length of the revision coverered
 by this signature (for a file with a single revision, this
 will be the length of the file).

 These requirements are verified as part of the
 getNumberOfRevisionsCovered() method, which is the
 method you should call if you're trying to verify the file.
 It's anticipated that ths method will be more useful for
 those trying to insert a signature into the PDF after it's
 been created, asynchronously:

 long[] range = signature.getByteRangeCovered();
 long offset = range[1] + 1;
 long len = range[2] - range[1];
 // insert signature bytes between off and off+len

	Since:
	2.24.4

	
verifyCertificates

public static X509Certificate verifyCertificates(X509Certificate[] certs,
 KeyStore keystore,
 CRL crl,
 Calendar signdate)
 throws GeneralSecurityException

Verify a list of X.509 certificates against a list of trusted certificates.

 The X.509 certificate(s) used to sign the document are verified and
 compared against the certificates in the keystore, which are
 assumed to be trusted. An optional Certificate Revocation
 List may be specified with a list of compromised certificates.

 The method returns the first certificate specified in the PDF that
 cannot be verified. If every certificate in the chain is verified
 and the final certificate is signed by a certificate in the specified
 keystore, the entire chain is considered valid and this method returns
 null.

 The specified keystore may be the result of loadDefaultKeyStore(),
 or a user specified keystore. The CRL may be (and usually is) null.

 Note that self-signed certificates (as created by the Adobe Self-Sign
 handler) will generally fail, as they cannot be verified against a trusted
 root certificate. The only exception to this is if you're verifying against
 a keystore returned from loadAKFKeyStore(java.io.InputStream) or loadFDFKeyStore(java.io.InputStream),
 containing a certificate that was exported from Acrobat.

 Also note that unless you personally trust every entity (represented by
 a certificate) in the chain to issue certificates responsibly, verifying
 the chain integrity is worthless.

 We are happy to provide source code to this method - ask if you need it.

	Parameters:
	certs - the X509Certificate list to verify. Usually
 this is the return result from PKCS7SignatureHandler.getCertificates()
	keystore - the KeyStore containing one or more
 trusted certificates to verify the certificate chain against.
	crl - the Certificate Revocation List to check the
 certificates against. May be null.
	signdate - the date the documents was signed. Usually the output of
 getSignDate()
	Returns:
	the first certificate in the chain that couldn't be
 verified, or null if all were verified against a
 certificate from the keystore.
	Throws:
	GeneralSecurityException - if the KeyStore or any of the
 certificates are invalid.
	Since:
	2.0
	See Also:
	PKCS7SignatureHandler.getCertificates(),
loadAKFKeyStore(java.io.InputStream),
loadFDFKeyStore(java.io.InputStream),
loadPKCS7KeyStore(java.io.InputStream),
loadDefaultKeyStore()

	
isValidCertificate

public static boolean isValidCertificate(X509Certificate cert,
 CRL crl,
 Date signdate)

Return true if the specified X.509 Certificate is valid for the specified date,
 has not been revoked and has no unknown critical extensions. The code looks like:

 try {
 cert.checkValidity(signdate);
 return !cert.hasUnsupportedCriticalExtensions() && (crl==null || !crl.isRevoked(cert));
 } catch (Exception e) { return false; }

	Parameters:
	cert - the X.509 certificate to verify
	crl - the Certificate Revokation List to search - may be null
	signdate - the date the certificate was used for signing

	
loadDefaultKeyStore

public static KeyStore loadDefaultKeyStore()
 throws GeneralSecurityException

Return the default Java keystore to validate keys against.
 This is the same keystore used to verify signed JAR files,
 and is distributed with most versions of Java. It includes
 the public certificates for several certifying authorities -
 in our version (Sun JDK1.3.1), VeriSign and Thawte.

	Throws:
	GeneralSecurityException - if the default keystore cannot be loaded - an unlikely situation

	
loadTrustedKeyStore

public static KeyStore loadTrustedKeyStore()
 throws GeneralSecurityException

 Return a KeyStore containing various trusted roots that are widely approved by
 national or multi-national bodies. Currently this contains the various root
 certificates granted the ability to sign qualified or unqualified signatures,
 timestamps and OCSP responses under the
 eiDAS
 regulations. More may be added at some point.

 This list will be kept up to date by BFO, but is not relied upon internally for any
 cryptographic process. It is referenced when we are trying to build a certificate chain
 when signing - if the chain stops at one of these certificates, no warning about a
 truncated certificate chain is printed.

	Throws:
	GeneralSecurityException
	Since:
	2.23.6

	
loadAKFKeyStore

public static KeyStore loadAKFKeyStore(InputStream in)
 throws IOException,
 GeneralSecurityException

 Load an X.509 certificate from an "Adobe Key File" keystore, the type
 exported from the Adobe Self-Sign signature handler in Acrobat 4.0. The
 file (which typically has a .akf suffix) contains a
 self-signed X.509 certificate, which can be used to verify (but not sign)
 documents created with the Adobe Self-Sign signature handler.

 The returned KeyStore has a single X.509 certificate, and can be
 passed to the verifyCertificates method to fully validate
 a document signed with the "self-sign" signature handler, acting as
 the Java equivalent of the "Personal Address Book" in Acrobat 4 terminology.

 Acrobat 5.0 keystores are saved in a different format - the filename is usually
 "CertExchangeName.fdf", where Name is the name of the user.
 These keystores can be loaded via the loadFDFKeyStore(java.io.InputStream) method.

 Please note the InputStream is not closed by this method.

	Throws:
	IOException - if the keystore cannot be parsed or loaded properly
	GeneralSecurityException - if the keystore's contents are cryptographically wrong
	See Also:
	HANDLER_SELFSIGN,
verifyCertificates(java.security.cert.X509Certificate[], java.security.KeyStore, java.security.cert.CRL, java.util.Calendar),
loadFDFKeyStore(java.io.InputStream)

	
loadFDFKeyStore

public static KeyStore loadFDFKeyStore(InputStream in)
 throws IOException,
 GeneralSecurityException

 Load an X.509 certificate from an "Adobe Self-Sign Key" keystore, the type
 exported from the Adobe Self-Sign signature handler in Acrobat 5.0. The
 file (which is exported with a .fdf suffix) contains a
 self-signed X.509 certificate, which can be used to verify (but not sign)
 documents created with the Adobe Self-Sign signature handler.

 The returned KeyStore has a single X.509 certificate, and can be
 passed to the verifyCertificates method to fully validate
 a document signed with the "self-sign" signature handler, acting as
 the Java equivalent of the "Trusted Certificates" in Acrobat 5 terminology.

 Acrobat 4.0 keystores are saved in a different format - the filename has a suffix
 of ".akf". These keystores can be loaded via the
 loadAKFKeyStore(java.io.InputStream) method. Acrobat 5.0 can also save keys in a PKCS#7 format,
 which can be loaded using the loadPKCS7KeyStore(java.io.InputStream) method.

 Please note the InputStream is not closed by this method.

	Throws:
	IOException - if the keystore cannot be parsed or loaded properly
	GeneralSecurityException - if the keystore's contents are cryptographically wrong
	Since:
	1.2.1
	See Also:
	HANDLER_SELFSIGN,
verifyCertificates(java.security.cert.X509Certificate[], java.security.KeyStore, java.security.cert.CRL, java.util.Calendar),
loadAKFKeyStore(java.io.InputStream)

	
loadPKCS7KeyStore

public static KeyStore loadPKCS7KeyStore(InputStream in)
 throws IOException,
 GeneralSecurityException

 Load a list of one or more X.509 certificates from a PKCS#7 file.

 The returned KeyStore contains X.509 certificates and can be
 passed to the verifyCertificates method to verify (but not sign)
 the certificates used to sign a PDF document.

 Note that we provide this method for convenience only. If you're working
 heavily with PKCS format files, we recommend obtaining a JCE implementation
 that supports them fully. One that we have tested with some success is provided by
 The Legion of the Bouncy Castle.

 Please note the InputStream is not closed by this method.

	Throws:
	IOException - if the keystore cannot be parsed or loaded properly
	GeneralSecurityException - if the keystore's contents are cryptographically wrong
	See Also:
	HANDLER_VERISIGN,
verifyCertificates(java.security.cert.X509Certificate[], java.security.KeyStore, java.security.cert.CRL, java.util.Calendar)

	
getIssuerField

public static String getIssuerField(X509Certificate cert,
 String field)
 throws CertificateException

 Return the specified X.500 field from the specified X.509 certificates Issuer.

 Each X.509 certificate has two entities - a subject and an issuer. These are
 represented in java by the Principal class, but
 unfortunately that class doesn't allow for extraction of the various elements
 from the entity - elements like Common Name, Country, Organization etc.

 The getIssuerField(java.security.cert.X509Certificate, java.lang.String) and getSubjectField(java.security.cert.X509Certificate, java.lang.String) methods aren't
 specific to digital signatures or PKCS#7, but are useful "utility" methods
 that fill that gap in functionality.

	Parameters:
	cert - the X.509 certificate to extract the Issuer from
	field - the field to return. Can be one of "C" (country), "CN" (common
 name), "O" (organization"), "OU" (organization unit), "L" (locale), "ST" (state
 or province) or "Email" (email address - although technically not part of X.500
 this is sometimes included)
	Returns:
	the requested field, or null if the field is not part of
 the X.500 name.
	Throws:
	CertificateException

	
getSubjectField

public static String getSubjectField(X509Certificate cert,
 String field)
 throws CertificateException

 Return the specified X.500 field from the specified X.509 certificates Subject.
 See the getIssuerField(java.security.cert.X509Certificate, java.lang.String) method for more information.

	Parameters:
	cert - the X.509 certificate to extract the Issuer from
	field - the field to return. Can be one of "C" (country), "CN" (common
 name), "O" (organization"), "OU" (organization unit), "L" (locale), "ST" (state
 or province) or "Email" (email address - although technically not part of X.500
 this is sometimes included)
	Returns:
	the requested field, or null if the field is not part of
 the X.500 name.
	Throws:
	CertificateException

	
rebuild

public void rebuild()

Description copied from class: FormElement

Cause the annotation list to be rebuilt. Unless you're rendering the annotation
 using the viewer, it's not necessary to call this method.

	Overrides:
	rebuild in class FormElement

	
setRequiredTimestampServer

public void setRequiredTimestampServer(URI uri)

Set the URI of the TimeStamp server that must be used when this (blank) signature
 is eventually signed.

	Parameters:
	uri - the URI of the TimeStamp server to contact, or null if none
 is required.
	Since:
	2.11.14

	
setRequiredReasons

public void setRequiredReasons(String[] validreasons)

Set the list of Reasons from which the user must choose when this (blank) signature
 is eventually signed.

	Parameters:
	validreasons - an array of reasons that the user will have to choose from, or
 null to not require a reason to be specified.
	Since:
	2.11.14

	
setRequiredCertificateIssuers

public void setRequiredCertificateIssuers(X509Certificate[] certs)

 Set restrictions on which X.509 Certificates can be used when this (blank) signature
 is eventually signed. This method can be used to ensure that the identity used
 when signing was issued by a particular Certification Authority.

 For example, to ensure that a user was signing the PDF with an identity from your
 own in-house Certification Authority, you could use code like the following. The
 file "myca.cer" contains the X.509 Certificate of your CA.

 InputStream certstream = new FileInputSteram("myca.cer");
 CertificateFactory factory = CertificateFactory.getInstance("X.509");
 X509Certificate cert = (X509Certificate)factory.generateCertificate(certstream);
 sig.setRequiredCertificateIssuers(new X509Certificate[] { cert });
 URI uri = new URI("http://security.yourcompany.com/createnewidentity");
 sig.setRequiredCertificateFallbackURI(uri);

	Parameters:
	certs - an array of X.509 Certificates of valid Certification Authorities, or null
 to accept any CA.
	Since:
	2.11.14

	
setRequiredCertificateSubjects

public void setRequiredCertificateSubjects(X509Certificate[] certs)

Set restrictions on which X.509 Certificates can be used when this (blank) signature
 is eventually signed. This method can be used to ensure that only certain identities
 can be used when signing.

	Parameters:
	subjects - an array of X.509 Certificates which are allowed to sign this signature,
 or null to accept a signature from anyone.
	Since:
	2.11.14

	
setRequiredCertificateFallbackURI

public void setRequiredCertificateFallbackURI(URI uri)

Set the URI the user is directed to if the conditions set by setRequiredCertificateIssuers(java.security.cert.X509Certificate[])
 and setRequiredCertificateSubjects(java.security.cert.X509Certificate[]) are not met.

	Parameters:
	uri - a URI to redirect the signing user to if the "issuers" and "subjects" conditions are not met, or null to disable this option.
	Since:
	2.11.14

	
setRequiredDigestAlgorithms

public void setRequiredDigestAlgorithms(String[] algorithms)

Set the list of allowable digest algorithms that can be used to sign this signature,
 or null to remove any existing restrictions.

	Parameters:
	algorithms - an array of 1 or more names of digest algorithms, eg "SHA256", "SHA512"
	Since:
	2.20.1
	See Also:
	getRequiredDigestAlgorithms()

	
getRequiredDigestAlgorithms

public String[] getRequiredDigestAlgorithms()

Return the list of allowable digest algorithms that can be used to sign this signature,
 or null if this is not specified.

	Since:
	2.20.1
	See Also:
	setRequiredDigestAlgorithms(java.lang.String[])

	
getRequiredReasons

public String[] getRequiredReasons()

Set the list of reasons that must be chosen from when signing, as set
 by setRequiredReasons(java.lang.String[])

	Since:
	2.11.14

	
getRequiredTimestampServer

public URI getRequiredTimestampServer()

Get the URI of the TimeStamp server that must be used when signing
 as set by setRequiredTimestampServer(java.net.URI), or null
 if none is specified

	Since:
	2.11.14

	
getRequiredCertificateIssuers

public X509Certificate[] getRequiredCertificateIssuers()

Return the list of required Issuer certificates as set by
 setRequiredCertificateIssuers(java.security.cert.X509Certificate[]), or null if none were specified.

	Since:
	2.11.14

	
getRequiredCertificateSubjects

public X509Certificate[] getRequiredCertificateSubjects()

Return the list of required Issuer certificates as set by
 setRequiredCertificateSubjects(java.security.cert.X509Certificate[]), or null if none were specified.

	Since:
	2.11.14

	
getRequiredCertificateFallbackURI

public URI getRequiredCertificateFallbackURI()

Return the URI to be used if the "issuers" and "subjects" Certificate restrictions
 are not met, as set by setRequiredCertificateFallbackURI(java.net.URI), or null
 if none were specified.

	Since:
	2.11.14

	
getValue

public String getValue()

As signatures do not have a "value" as such, this method always returns null.

	Specified by:
	getValue in class FormElement

	
getCertificationType

public int getCertificationType()

Return the type of "Certification" this signature attests to. One of
 CERTIFICATION_UNCERTIFIED, CERTIFICATION_NOCHANGES,
 CERTIFICATION_ALLOWFORMS or CERTIFICATION_ALLOWCOMMENTS.
 Since 2.13 this method returns the value from
 SignatureHandler.getCertificationType()

	Since:
	2.7.4
	See Also:
	setCertificationType(int, java.lang.String)

	
setCertificationType

public void setCertificationType(int certificationtype,
 String attestation)

Causes this signatures be "Certifying" signature when it's signed - also
 known as an "Author" signature..
 The parameter must be one of CERTIFICATION_UNCERTIFIED (the default),
 CERTIFICATION_NOCHANGES, CERTIFICATION_ALLOWFORMS or
 CERTIFICATION_ALLOWCOMMENTS.
 Certifified signatures require at least Acrobat 7.0 to verify.

	Parameters:
	certificationtype - the type of certification to use.
	attestation - the Legal Attestation you wish to make about the signature. May be null.
	Since:
	2.7.4
	See Also:
	getCertificationType()

	
toString

public String toString()

	
putLiteral

public void putLiteral(String key,
 String tokens)

Put a literal token sequnce. For debugging

	Parameters:
	key - the key
	tokens - the token sequence, eg "true" or "/foo" or "[/Foo/Bar]". No refs, just direct objects.

	
clone

protected Object clone()

	Overrides:
	clone in class Object

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2024 Big Faceless Organization

