

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.3

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class PDFReader

	java.lang.Object
	
	org.faceless.pdf2.PDFReader

	

public final class PDFReader
extends Object

 The PDFReader class adds the ability to load an existing PDF to the
 library. Note that this class is part of the "Extended Edition" of the
 library - although it's supplied with the package an "extended edition"
 license must be purchased to activate this class.

 There are a number of constructors on this class which can be used to load a PDF
 from File and InputStream objects, but - while valid - these are all
 now wrappers on a more generalized approach. These methods will not be deprecated
 and existing code has no need to change, but for more flexiblity the new approach is recommended:

 PDFReader reader = new PDFReader();
 reader.setSource(source);
 reader.addEncryptionHandler(handler); // optional
 reader.load();
 PDF pdf = new PDF(reader);

 Revisions

 A PDF file may sometimes contain different versions of itself in the one file.
 These "revisions" show how the state of the document has changed over time. For
 most purposes this information isn't terribly useful - prior to version 1.2.1
 only the latest revision was used - but they do play an important role when
 using Digital Signatures.

 When a signature is applied to the file, the current revision is locked and
 any further changes to the file result in a new revision being made. With
 Adobe Acrobat several signatures can be applied, each one of which will result
 in a new revision.

 It's important to remember that changes can be made a document after
 it's been signed, and provided that they're made in a new revision, the
 signature won't be invalidated - but the signature won't cover the whole
 of the document either. When validating a signed document this needs to be taken
 into account

 Another interesting feature of revisions is that with a document with multiple
 revisions, it's possible to "roll back" to a previous version. This is done by
 passing in a specific revision number to the PDF(PDFReader,int)
 constructor - the PDF will be created as it was at the specified revision.

 Parallel Operation note: Since 2.10 this class
 will use multiple threads in parallel where possible. The number of threads
 defaults to the available processors but can
 be controlled by setting the Threads property
 (typically by setting the
 org.faceless.pdf2.Threads System property)
 to the number of threads required. Each thread requires only minimal heap so it's
 safe to run as many as you like.

	Since:
	1.1.12

	

	

Constructor Summary

Constructors 	Constructor	Description
	PDFReader()	
Create a new PDFReader.

	PDFReader(File in)	
Read an unencrypted PDF from the specified file.

	PDFReader(File in,
 String password)	
Read an encrypted PDF from the specified File.

	PDFReader(File in,
 EncryptionHandler encrypt)	
Read an encrypted PDF from the specified File.

	PDFReader(File in,
 EncryptionHandler[] encryptlist,
 float[] progress)	
Read a PDF from the specified File, and report on progress.

	PDFReader(File in,
 EncryptionHandler encrypt,
 float[] progress)	
Read a PDF from the specified InputStream, and report on progress.

	PDFReader(InputStream in)	
Read an encrypted PDF from the specified InputStream.

	PDFReader(InputStream in,
 String password)	
Read an encrypted PDF from the specified InputStream.

	PDFReader(InputStream in,
 EncryptionHandler encrypt)	
Read an encrypted PDF from the specified InputStream.

	PDFReader(InputStream in,
 EncryptionHandler[] encryptlist,
 float[] progress)	
Read a PDF from the specified InputStream, and report on progress.

	PDFReader(InputStream in,
 EncryptionHandler encrypt,
 float[] progress)	
Read a PDF from the specified InputStream, and report on progress.

	

Method Summary

All Methods Instance Methods Concrete Methods 	Modifier and Type	Method	Description
	void	addEncryptionHandler(EncryptionHandler handler)	
Add an EncryptionHandler to be tried when loading the PDF.

	int	getNumberOfRevisions()	

 Return the number of revisions that have been made to this file.

	int	getPDFVersion()	
Return the PDF version number declared in the file header.

	float	getProgress()	
Return the progress of the load, from 0 to 1

	void	load()	
Load the PDF from the specified source (set by setSource(java.io.File), which must be
 called before this method).

	void	setLinearizedLoader(boolean linearizer)	
Set whether to use the Linearization tables (if they exist) in the PDF to
 load it on demand.

	void	setSource(File file)	
Set the source for this PDFReader to the specified File.

	void	setSource(InputStream in)	
Set the source for this PDFReader to the specified InputStream.

	void	setSource(URL url)	
Set the source for this PDFReader to the specified URL.

	void	setSource(URLConnection con)	
Set the source for this PDFReader to the specified URLConnection.

	

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

	

	

Constructor Detail

	
PDFReader

public PDFReader()

Create a new PDFReader. Unlike the other constructors
 this method does not initiate the load immediately: the
 setSource(java.io.File) method and then the load() method
 must be called before this object is passed into the PDF(PDFReader)
 constructor.

	Since:
	2.14

	
PDFReader

public PDFReader(File in)
 throws IOException

Read an unencrypted PDF from the specified file.
 This legacy constructor is equivalent to the following code - see the API documentation for those methods for details:

 PDFReader reader = new PDFReader();
 reader.setSource(in);
 reader.load();

	Parameters:
	in - the File to read from
	Throws:
	IOException

	
PDFReader

public PDFReader(File in,
 String password)
 throws IOException

Read an encrypted PDF from the specified File. The PDF is encrypted using
 the StandardEncryptionHandler and the specified password.
 This legacy constructor is equivalent to the following code - see the API documentation for those methods for details:

 PDFReader reader = new PDFReader();
 reader.setSource(in);
 reader.addEncryptionHandler(new StandardEncryptionHandler(password));
 reader.load();

	Parameters:
	in - the File to read from
	password - the password needed to open the file, or null for no password
	Throws:
	IOException

	
PDFReader

public PDFReader(InputStream in)
 throws IOException

Read an encrypted PDF from the specified InputStream.
 This legacy constructor is equivalent to the following code - see the API documentation for those methods for details:

 PDFReader reader = new PDFReader();
 reader.setSource(in);
 reader.load();

	Parameters:
	in - the InputStream to read from
	Throws:
	IOException

	
PDFReader

public PDFReader(InputStream in,
 String password)
 throws IOException

Read an encrypted PDF from the specified InputStream. The PDF is encrypted using
 the StandardEncryptionHandler and the specified password.
 This legacy constructor is equivalent to the following code - see the API documentation for those methods for details:

 PDFReader reader = new PDFReader();
 reader.setSource(in);
 reader.addEncryptionHandler(new StandardEncryptionHandler(password));
 reader.load();

	Parameters:
	in - the InputStream to read from
	password - the password needed to open the file, or null for no password
	Throws:
	IOException

	
PDFReader

public PDFReader(InputStream in,
 EncryptionHandler encrypt)
 throws IOException

Read an encrypted PDF from the specified InputStream.
 This legacy constructor is equivalent to the following code - see the API documentation for those methods for details:

 PDFReader reader = new PDFReader();
 reader.setSource(in);
 reader.addEncryptionHandler(encrypt);
 reader.load();

	Parameters:
	in - the InputStream to read from
	encrypt - the EncryptionHandler to decrypt the PDF, or null for no encryption
	Throws:
	IOException
	Since:
	2.0

	
PDFReader

public PDFReader(File in,
 EncryptionHandler encrypt)
 throws IOException

Read an encrypted PDF from the specified File.
 This legacy constructor is equivalent to the following code - see the API documentation for those methods for details:

 PDFReader reader = new PDFReader();
 reader.setSource(in);
 reader.addEncryptionHandler(encrypt);
 reader.load();

	Parameters:
	in - the InputStream to read from
	encrypt - the EncryptionHandler to decrypt the PDF, or null for no encryption
	Throws:
	IOException
	Since:
	2.2.5

	
PDFReader

public PDFReader(InputStream in,
 EncryptionHandler encrypt,
 float[] progress)
 throws IOException

Read a PDF from the specified InputStream, and report on progress.
 The progress field is updated throughout the read with values from 0 to 1 indicating how much of the PDF has been read.
 This legacy constructor is equivalent to the following code - see the API documentation for those methods for details:

 PDFReader reader = new PDFReader();
 reader.setSource(in);
 reader.addEncryptionHandler(encrypt);
 reader.load();

	Parameters:
	in - the stream to read from
	encrypt - the EncryptionHandler to decrypt the PDF, or null for no encryption
	progress - an optional array one item long, the first parameter of which will by updated throughout the read
	Throws:
	IOException
	Since:
	2.8

	
PDFReader

public PDFReader(File in,
 EncryptionHandler encrypt,
 float[] progress)
 throws IOException

Read a PDF from the specified InputStream, and report on progress.
 The progress field is updated throughout the read with values from 0 to 1 indicating how much of the PDF has been read.
 This legacy constructor is equivalent to the following code - see the API documentation for those methods for details:

 PDFReader reader = new PDFReader();
 reader.setSource(in);
 reader.addEncryptionHandler(encrypt);
 reader.load();

	Parameters:
	in - the File to read from
	encrypt - the EncryptionHandler to decrypt the PDF, or null for no encryption
	progress - an optional array one item long, the first parameter of which will by updated throughout the read
	Throws:
	IOException
	Since:
	2.8

	
PDFReader

public PDFReader(InputStream in,
 EncryptionHandler[] encryptlist,
 float[] progress)
 throws IOException

Read a PDF from the specified InputStream, and report on progress.
 The progress field is updated throughout the read with values from 0 to 1 indicating how much of the PDF has been read.
 This legacy constructor is equivalent to the following code - see the API documentation for those methods for details:

 PDFReader reader = new PDFReader();
 reader.setSource(in);
 reader.addEncryptionHandler(...encryptlist entries...);
 reader.load();

	Parameters:
	in - the InputStream to read from
	encryptlist - the list of possible EncryptionHandlers to decrypt the PDF, or null for no encryption
	progress - an optional array one item long, the first parameter of which will by updated throughout the read
	Throws:
	IOException
	Since:
	2.8.2

	
PDFReader

public PDFReader(File in,
 EncryptionHandler[] encryptlist,
 float[] progress)
 throws IOException

Read a PDF from the specified File, and report on progress.
 The progress field is updated throughout the read with values from 0 to 1 indicating how much of the PDF has been read.
 This legacy constructor is equivalent to the following code - see the API documentation for those methods for details:

 PDFReader reader = new PDFReader();
 reader.setSource(in);
 reader.addEncryptionHandler(...encryptlist entries...);
 reader.load();

	Parameters:
	in - the File to read from
	encryptlist - the list of possible EncryptionHandlers to decrypt the PDF, or null for no encryption
	progress - an optional array one item long, the first parameter of which will by updated throughout the read
	Throws:
	IOException
	Since:
	2.8.2

	

Method Detail

	
setSource

public void setSource(File file)
 throws IOException

Set the source for this PDFReader to the specified File. The PDF will not be loaded
 into memory, so the file will be used as a backing store and must remain in existance and
 unchanged for the life of the PDF created from this PDFReader.

	Throws:
	IOException
	Since:
	2.14
	See Also:
	setSource(InputStream),
setSource(URL),
setSource(URLConnection)

	
setSource

public void setSource(InputStream in)
 throws IOException

Set the source for this PDFReader to the specified InputStream. The stream
 will be fully loaded into memory, and closed automatically when this is complete.

	Throws:
	IOException
	Since:
	2.14
	See Also:
	setSource(File),
setSource(URL),
setSource(URLConnection)

	
setSource

public void setSource(URL url)
 throws IOException

Set the source for this PDFReader to the specified URL. If the URL
 uses the http or https scheme, the webserver supports the "Range"
 header and the PDF at that URL is Linearized, there will be an initial
 load, with the rest continuing in the background or on demand. The URL
 wil be opened and closed throughout this process, with possibly multiple
 requests at once. Consequently it should refer to a static resource which
 must remain in existance and unchanged for the life of the PDF
 created from this PDFReader.

	Throws:
	IOException
	Since:
	2.14
	See Also:
	setSource(File),
setSource(InputStream),
setSource(URLConnection),
setLinearizedLoader(boolean)

	
setSource

public void setSource(URLConnection con)
 throws IOException

Set the source for this PDFReader to the specified URLConnection.
 If the URL uses the http or https schema, the server supports the "Range"
 header and the PDF on that URL is Linearized, there will be an initial
 load, with the rest continuing in the background or on demand. The URL
 wil be opened and closed throughout this process, with possibly multiple
 requests at once. Consequently it should refer to a static resource which
 must remain in existance and unchanged for the life of the PDF
 created from this PDFReader.

	Throws:
	IOException
	Since:
	2.21
	See Also:
	setSource(File),
setSource(InputStream),
setSource(URL),
setLinearizedLoader(boolean)

	
setLinearizedLoader

public void setLinearizedLoader(boolean linearizer)

Set whether to use the Linearization tables (if they exist) in the PDF to
 load it on demand. This defaults to true if the PDF source is set to a
 URL, false otherwise.

	Since:
	2.14
	See Also:
	setSource(URL)

	
addEncryptionHandler

public void addEncryptionHandler(EncryptionHandler handler)

Add an EncryptionHandler to be tried when loading the PDF.
 Any items added here will be tried in order until one succeeds.

	Since:
	2.14

	
getProgress

public float getProgress()

Return the progress of the load, from 0 to 1

	Since:
	2.14

	
load

public void load()
 throws IOException

Load the PDF from the specified source (set by setSource(java.io.File), which must be
 called before this method). The load method should be called before
 the PDFReader is passed to the PDF constructor
 - if it hasn't it will be called automatically at that point, but as the PDF constructor
 does not throw an IOException (for historical reasons), if one is thrown at that
 point it will be wrapped in an IllegalStateException.

	Throws:
	IOException
	Since:
	2.14

	
getNumberOfRevisions

public int getNumberOfRevisions()

 Return the number of revisions that have been made to this file.
 Earlier revisions of a PDF file can be loaded by passing a revision
 number less than this value to the appropriate PDF(PDFReader,int)
 constructor.

	Returns:
	the number of revisions, from 1 for an unmodified file with no subsequent changes
	Since:
	1.2.1

	
getPDFVersion

public int getPDFVersion()

Return the PDF version number declared in the file header.

	Since:
	2.28

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.3

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2023 Big Faceless Organization

