

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class PKCS7SignatureHandler

	java.lang.Object
	
	org.faceless.pdf2.SignatureHandler
	
	org.faceless.pdf2.PKCS7SignatureHandler

	

public abstract class PKCS7SignatureHandler
extends SignatureHandler

 This class represents the subclass of digital signatures that rely on
 Public/Private key pairs and that meet the requirements laid down in the
 document "PDF Public-Key Digital Signature and Encryption Specification",
 published by Adobe. As of 2016 almost all security handlers used by
 Acrobat will be an instance of this class: it works with signatures created
 by the Adobe.PPKMS and Adobe.PPKLite engines in Acrobat, as well as
 Document level timestamps introduced in PDF 2.0, and many older, legacy
 public-key based signature handlers as well.

 Instances of this class are created by both the AcrobatSignatureHandlerFactory
 and TimeStampHandlerFactory.

	See Also:
	AcrobatSignatureHandlerFactory

	

	

Nested Class Summary

Nested Classes 	Modifier and Type	Class	Description
	static class 	PKCS7SignatureHandler.OCSPResponse	
An OCSP response relating to the validity of a digital signature.

	static interface 	PKCS7SignatureHandler.SigningEngine	
This interface defines the engine used to actually sign a PDF.

	class 	PKCS7SignatureHandler.ValidationInformation	
This class represents long-term validation information, as described in
 PAdES part 4.

	

Nested classes/interfaces inherited from class org.faceless.pdf2.SignatureHandler

SignatureHandler.Placeholder

	

Constructor Summary

Constructors 	Modifier	Constructor	Description
	protected 	PKCS7SignatureHandler()	

	

Method Summary

All Methods Static Methods Instance Methods Abstract Methods Concrete Methods 	Modifier and Type	Method	Description
	boolean	addValidationInformation(KeyStore keystore)	
Add Long Term Validation information for this signature to the PDF.

	boolean	addValidationInformation(KeyStore keystore,
 List<PKCS7SignatureHandler.OCSPResponse> ocspResponses,
 List<X509CRL> crls)	

 Add Long Term Validation information for this signature to the PDF.

	X509Certificate[]	getCertificates()	
Return the list of certificates included in this signature.

	String	getDefaultName()	
Returns an optional default value that can be used to initialize
 FormSignature.setName(java.lang.String), or null if no such name
 is available.

	int	getEstimatedContentSize(int additional)	
Return the estimated size of the signature object to be embedded, or <= 0
 if this cannot be determined.

	String	getFilter()	
Return the name of the filter, eg "Adobe.PPKLite".

	String	getHandlerName()	
The handler name for a Document TimeStamp is "ETSI.RFC3161",
 otherwise it is "PKCS7"

	String	getHashAlgorithm()	
Return the Hash algorithm used by the PKCS#7 object when signing.

	PDFCanvas	getLayerAppearance(String layername,
 PDFStyle textstyle)	
Return a PDFCanvas for the specified layer.

	String[]	getLayerNames()	

 Return the list of appearance layer names used by this Signature Handler to
 create a visible appearance on the page, in the order they should be drawn.

	MessageDigest	getMessageDigest()	
Return a MessageDigest that will be used to calculate the digest of the PDF
 for signing.

	Provider	getProvider()	
Return the Provider to be used by all operations in this
 class, or null to use the default.

	SSLSocketFactory	getSSLSocketFactory()	
Return the SSLSocketFactory to be used by all network connections
 to HTTPS URLs from this class, or null to use the default.

	abstract String	getSubFilter()	
Return the SubFilter field, which determines how the PKCS#7 object
 is encoded.

	X509Certificate[]	getTimeStampCertificates()	

 If the PKCS#7 object was digitally time-stamped using an RFC3161 time-stamp
 server, this method verifies and returns the list of X.509 certificates that
 verify the timestamp, with the actual signing certificate first and the rest
 in no particular order.

	List<PKCS7SignatureHandler.ValidationInformation>	getValidationInformation()	
Returns the long-term validation details for the signature that are embedded in the PDF.

	protected void	prepareToSign(KeyStore keystore,
 String alias,
 char[] password)	

 This method initialized the handler using the specified values into a state where
 it's ready to sign.

	static byte[]	queryTimeStampResponse(URL url,
 byte[] digest,
 String hashAlgorithm,
 int timeout,
 SSLSocketFactory sslSocketFactory)	
This is a helper method that can be called by those implementing their own custom
 PKCS7SignatureHandler.SigningEngine objects, and who need to create a timestamped signature.

	void	setCustomAppearance(PDFCanvas canvas,
 float x1,
 float y1,
 float x2,
 float y2)	

 Set a custom appearance for this signature.

	byte[]	sign()	

 Finish the digest calculation on the digest returned from SignatureHandler.getMessageDigest()
 and return a signature token the signs it.

	boolean	verify(InputStream in)	
Return a boolean indicating whether or not the signature handler
 can verify the specified InputStream.

	

Methods inherited from class org.faceless.pdf2.SignatureHandler

containsKey, getArrayValueSize, getBooleanValue, getCertificationType, getDictionaryValueKeys, getFormSignature, getNameValue, getNumericValue, getStreamValue, getStringValue, getTextStringValue, getVariables, preDigest, putArrayValue, putBooleanValue, putDictionaryValue, putNameValue, putNumericValue, putStreamValue, putStringValue, putTextStringValue

	

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

	

	

Constructor Detail

	
PKCS7SignatureHandler

protected PKCS7SignatureHandler()

	

Method Detail

	
getHashAlgorithm

public String getHashAlgorithm()

Return the Hash algorithm used by the PKCS#7 object when signing.
 Valid values are currently SHA1, SHA-256, SHA-384, SHA-512 or MD5

	Since:
	2.18.2

	
getFilter

public String getFilter()

Description copied from class: SignatureHandler

Return the name of the filter, eg "Adobe.PPKLite".

	Specified by:
	getFilter in class SignatureHandler

	
getSubFilter

public abstract String getSubFilter()

Return the SubFilter field, which determines how the PKCS#7 object
 is encoded. Valid values are "adbe.pkcs7.detached", "adbe.pkcs7.sha1"
 "adbe.x509.rsa_sha1" or "ETSI.CAdES.detached"

	
getHandlerName

public String getHandlerName()

The handler name for a Document TimeStamp is "ETSI.RFC3161",
 otherwise it is "PKCS7"

	Overrides:
	getHandlerName in class SignatureHandler
	Since:
	2.18.2

	
getProvider

public Provider getProvider()

Return the Provider to be used by all operations in this
 class, or null to use the default. Note that default will always
 be used as a fallback if the selected provider is unable to provide
 a resource (such as a digest algorithm). The default is null

	Since:
	2.18.3
	See Also:
	AcrobatSignatureHandlerFactory.setProvider(java.security.Provider)

	
getSSLSocketFactory

public SSLSocketFactory getSSLSocketFactory()

Return the SSLSocketFactory to be used by all network connections
 to HTTPS URLs from this class, or null to use the default. The default is
 null

	Since:
	2.28.4

	
prepareToSign

protected void prepareToSign(KeyStore keystore,
 String alias,
 char[] password)
 throws GeneralSecurityException

Description copied from class: SignatureHandler

 This method initialized the handler using the specified values into a state where
 it's ready to sign. This method should be used to set
 any additional fields in the Signature dictionary, for example "Certs" for
 the Self-Sign handler.

 Those overriding this method must call super.prepareToSign()
 before doing anything else.

	Overrides:
	prepareToSign in class SignatureHandler
	Parameters:
	keystore - the KeyStore
	alias - which key to use
	password - the password to use to decode the key
	Throws:
	GeneralSecurityException

	
getEstimatedContentSize

public int getEstimatedContentSize(int additional)

Description copied from class: SignatureHandler

Return the estimated size of the signature object to be embedded, or <= 0
 if this cannot be determined. The default implementation returns 0.

	Overrides:
	getEstimatedContentSize in class SignatureHandler
	Parameters:
	additional - the negation of any value previously passed into SignatureHandler.setContentSize(int)

	
getMessageDigest

public MessageDigest getMessageDigest()

Description copied from class: SignatureHandler

Return a MessageDigest that will be used to calculate the digest of the PDF
 for signing. This message will be called before SignatureHandler.sign() - see the API docs
 for that method for more details.

	Specified by:
	getMessageDigest in class SignatureHandler

	
sign

public byte[] sign()
 throws GeneralSecurityException,
 IOException

Description copied from class: SignatureHandler

 Finish the digest calculation on the digest returned from SignatureHandler.getMessageDigest()
 and return a signature token the signs it. The returned byte array will be stored
 as the "Contents" value of the Signature dictionary.

 As well as being called to perform the actual signing, the default behaviour of the
 SignatureHandler.getVariables() method is also to call this method with an empty digest, to
 determine the size of the token to store in the PDF (the SignatureHandler.getMessageDigest()
 method is called twice as well). This can be overridden, by calling
 AcrobatSignatureHandlerFactory.setContentSize(int) for handlers created by that
 factory or, if you're implementing a custom signature handler, by writing your own
 SignatureHandler.getVariables() method.

	Overrides:
	sign in class SignatureHandler
	Returns:
	a byte array representing the signature token
	Throws:
	GeneralSecurityException - if the signature cannot be applied for some cryptographic reason
	IOException - if the InputStream cannot be read

	
verify

public final boolean verify(InputStream in)
 throws GeneralSecurityException,
 IOException

Description copied from class: SignatureHandler

Return a boolean indicating whether or not the signature handler
 can verify the specified InputStream.

	Specified by:
	verify in class SignatureHandler
	Returns:
	true if the signature matches the specified InputStream
	Throws:
	GeneralSecurityException - if the signature cannot be verified for some cryptographic reason
	IOException - if the InputStream cannot be read

	
getCertificates

public X509Certificate[] getCertificates()
 throws CertificateException

Return the list of certificates included in this signature.
 The first certificate is the X.509 certificate used to sign
 the PDF, and the optional additional certificates are those
 used to validate the earlier certificates, in no particular
 order.

	Returns:
	a list of one or more X.509 Certificates
	Throws:
	CertificateException

	
getLayerNames

public String[] getLayerNames()

Description copied from class: SignatureHandler

 Return the list of appearance layer names used by this Signature Handler to
 create a visible appearance on the page, in the order they should be drawn.
 This method is called internally by the FormSignature class
 when drawing the signature annotations on the page.
 For more information see the document "Digital Signature Appearances for Public-Key Interoperability", from Adobes website.

 As an example, both the Verisign and the SelfSign handlers return the array
 ["n0", "n1", "n2", "n3"].

	Specified by:
	getLayerNames in class SignatureHandler
	Returns:
	the ordered list of layer names that should to used to create a visible
 representation of this signature on a page.
	See Also:
	SignatureHandler.getLayerAppearance(java.lang.String, org.faceless.pdf2.PDFStyle)

	
getLayerAppearance

public PDFCanvas getLayerAppearance(String layername,
 PDFStyle textstyle)

Description copied from class: SignatureHandler

Return a PDFCanvas for the specified layer.
 This method is called internally by the FormSignature class
 when drawing the signature annotations on the page.
 For more information see the document "Digital Signature Appearances for Public-Key Interoperability", from Adobes website.

	Specified by:
	getLayerAppearance in class SignatureHandler
	Parameters:
	layername - the layer to create (from the list returned by SignatureHandler.getLayerNames())
	textstyle - the style in which to draw the text, if any
	Returns:
	a new PDFCanvas of any size containing the specified layer.
	See Also:
	SignatureHandler.getLayerNames()

	
setCustomAppearance

public void setCustomAppearance(PDFCanvas canvas,
 float x1,
 float y1,
 float x2,
 float y2)

 Set a custom appearance for this signature. See the AcrobatSignatureHandlerFactory.setCustomAppearance(org.faceless.pdf2.PDFCanvas, float, float, float, float) method for more details -
 unless you're manually overriding this class, that's the method you
 should be calling.

	Parameters:
	canvas - the canvas to display as the "n2" layer of the signature appearance.
	x1 - the left-most X co-ordinate to place the (optional) certificate text
	y1 - the bottom-most Y co-ordinate to place the (optional) certificate text
	x2 - the right-most X co-ordinate to place the (optional) certificate text
	y2 - the top-most Y co-ordinate to place the (optional) certificate text
	Since:
	2.0

	
getTimeStampCertificates

public X509Certificate[] getTimeStampCertificates()
 throws GeneralSecurityException,
 IOException

 If the PKCS#7 object was digitally time-stamped using an RFC3161 time-stamp
 server, this method verifies and returns the list of X.509 certificates that
 verify the timestamp, with the actual signing certificate first and the rest
 in no particular order. If this method succeeds, then the date returned by
 FormSignature.getSignDate() is the date guaranteed by the time-stamp.

 If the signature was time-stamped but the timestamp is corrupt or invalid,
 thie method will throw either a GeneralSecurityException or a
 IOException detailing why.

 If the signature was not timestamped, this method returns null.

 If the signature is, in itself, an RFC 3161 document-level TimeStamp as
 would be created by TimeStampHandlerFactory, then this method
 return the same list as getCertificates()

	Returns:
	an array of X509Certificate objects that authorized the timestamp, or null if there isn't a timestamp.
	Throws:
	GeneralSecurityException - if the TimeStamp is invalid
	IOException - if the TimeStamp is corrupt or can't be parsed
	Since:
	2.7.1

	
getDefaultName

public String getDefaultName()

Description copied from class: SignatureHandler

Returns an optional default value that can be used to initialize
 FormSignature.setName(java.lang.String), or null if no such name
 is available.

	Overrides:
	getDefaultName in class SignatureHandler

	
addValidationInformation

public boolean addValidationInformation(KeyStore keystore)
 throws GeneralSecurityException,
 IOException

Add Long Term Validation information for this signature to the PDF.
 Calls addValidationInformation(keystore, null, null)

	Parameters:
	keystore - the KeyStore to query for any additional root certificates, or null to not perform this step.
	Returns:
	true if all the required validation information could be added up to a trusted root, or false if
 some of the links in the chain could not be verified.
	Throws:
	GeneralSecurityException
	IOException
	Since:
	2.18.2
	See Also:
	getValidationInformation(),
TimeStampHandlerFactory

	
addValidationInformation

public boolean addValidationInformation(KeyStore keystore,
 List<PKCS7SignatureHandler.OCSPResponse> ocspResponses,
 List<X509CRL> crls)
 throws GeneralSecurityException,
 IOException

 Add Long Term Validation information for this signature to the PDF.
 This will perform an OCSP check on the signature, and add the response
 to the PDF (and, therefore, to the list of responses included in
 getValidationInformation()). It may be called on any previously signed
 PKCS#7 signature, including document-level Timestamps. Validation information
 will be ignored in Acrobat prior to Acrobat XI.

 For validation information to be considered complete,
 the entire certificate chain, including any trusted roots, must be embedded in the PDF.
 The trusted root certificates are often not included with the original signature, so if
 a KeyStore is supplied it will be searched for any missing root certificates
 to be embedded in the PDF. A suitable KeyStore for this purpose is the one returned by
 FormSignature.loadDefaultKeyStore(). As of 2.23.6, any Certificates still not
 found to complete the chain will be downloaded from the URL specified in the "CA Issuers"
 field of the subject Certificate.

 The signature must be signed and
 verified, otherwise an IllegalStateException
 will be thrown.

 Here's an example showing how to add validation information to all the signatures in a PDF.

 PDF pdf = new PDF(new PDFReader(new File("input.pdf")));
 KeyStore rootkeystore = FormSignature.loadDefaultKeyStore();
 for (FormElement elt : pdf.getForm().getElements().values()) {
 if (elt instanceof FormSignature) {
 FormSignature sig = (FormSignature)elt;
 if (sig.getSignatureHandler() instanceof PKCS7SignatureHandler) {
 PKCS7SignatureHandler handler = (PKCS7SignatureHandler)sig.getSignatureHandler();
 handler.addValidationInformation(rootkeystore);
 }
 }
 }
 pdf.render(new FileOutputStream("output.pdf"));

	Parameters:
	keystore - the KeyStore to query for any additional root certificates, or null to not perform this step.
	ocspResponses - an optional list of pre-existing OCSP responses which should be checked before requesting one. May be null
	crls - an optional list of CRLs which should be checked before requesting one. May be null
	Returns:
	true if all the required validation information could be added up to a trusted root, or false if
 some of the links in the chain could not be verified.
	Throws:
	GeneralSecurityException
	IOException
	Since:
	2.28
	See Also:
	getValidationInformation(),
TimeStampHandlerFactory,
AcrobatSignatureHandlerFactory

	
getValidationInformation

public List<PKCS7SignatureHandler.ValidationInformation> getValidationInformation()
 throws GeneralSecurityException,
 IOException

Returns the long-term validation details for the signature that are embedded in the PDF.
 Validation may be applied at the time of signing, by making OCSP and CRL requests for
 the certificates used during signing and embedding that information into the signed document.
 Or, it may be added after the PDF is signed, by performing the same steps and embedding
 the information into the PDF as a subsequent revision (with our API, this is done with
 the addValidationInformation(java.security.KeyStore) method). If LTV information is available from either of these
 stores, then this method returns a List of one or more PKCS7SignatureHandler.ValidationInformation objects with the details.
 If no long-term details are included, this method returns null.

	Throws:
	IllegalStateException - if the associated signature is not FormSignature.STATE_SIGNED
	GeneralSecurityException - if a signature or certificate exception is encountered while extracting
 this information
	IOException - if the object embedded in the PDF that contain this data are malformed and can't be parsed.
	Since:
	2.18.2

	
queryTimeStampResponse

public static byte[] queryTimeStampResponse(URL url,
 byte[] digest,
 String hashAlgorithm,
 int timeout,
 SSLSocketFactory sslSocketFactory)
 throws IOException,
 GeneralSecurityException

This is a helper method that can be called by those implementing their own custom
 PKCS7SignatureHandler.SigningEngine objects, and who need to create a timestamped signature. This
 method will generate a time-stamp Request and query the supplied URL, returning a
 DER-encoded time-stamp Response which can be returned from PKCS7SignatureHandler.SigningEngine.getTimeStampResp(byte[]).

	Parameters:
	url - the URL of the RFC3161 time-stamp server to query
	digest - the digest to sign
	hashAlgorithm - the algorithm to use, for example "SHA256"
	timeout - how long to wait for a connection to or response from the server, in milliseconds, before throwing an IOException
	sslSocketFactory - if not null and the URL is an HTTPS URL, this SSLSocketFactory will be used for the connection.
 If this value is null the default SSLSocketFactory is used for the connection, which is usually all that's required.
	Throws:
	IOException
	GeneralSecurityException
	Since:
	2.25.1

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2024 Big Faceless Organization

