

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class Form

	java.lang.Object
	
	org.faceless.pdf2.Form

	
	All Implemented Interfaces:
	Cloneable

public final class Form
extends Object

 The Form class represents the interactive Form that may be included as part
 of a PDF document. This form can be filled out by users and then eventually
 submitted for processing in the same way as an HTML form. Unlike HTML, a
 PDF document may only have one form.

 A form contains zero or more FormElement objects which you can
 access via the getElements() method. Each form element usually has
 one or more visual representation on the page - a WidgetAnnotation.
 These annotation can be accessed by the FormElement.getAnnotations()
 method. Each element in the form is stored under a name, which is used to
 reference the element and must be unique.

 The name may be a simple string, like "Element1", or it may be
 a compound name, with fields separated with dots, for example
 "Employee.Address.City". Simple and Compound names must not
 collide - for example, it would be illegal to have elements called
 "Country.Capital" and "Country" in the same document.

 Note: In Acrobat 6.0 Adobe introduced an XML-based forms architecture
 called XFA, which is stored alongside the regular PDF form in the document.
 We believe this is the future of forms as far as Adobe is concerned, but as
 it effectively means you're storing all your form data twice, problems must
 occur. In our case, it means that in versions prior to 2.4.3 any attempts to
 update a field in an XFA-enabled form will not appear when that document is
 loaded into Acrobat. This was fixed in 2.4.3, but even that version still
 has the limitation that any attempts to modify the appearance of the form (by
 changing the style, adding or deleting fields) will not show up in Acrobat.
 Generally XFA forms are created in a product like Adobe InDesign which do a
 much better job of layout than the PDF library, so this is not too important.

 Note that using interactive forms requires the "Extended Edition"
 of the library - although the classes are supplied with the package an
 "Extended Edition" license must be purchased to activate this functionality.

	Since:
	1.1.13
	See Also:
	PDF.getForm(),
FormElement

	

	

Method Summary

All Methods Instance Methods Concrete Methods 	Modifier and Type	Method	Description
	void	addElement(String name,
 FormElement element)	

 Add an element to the form.

	void	clear()	
Remove all the elements from the form

	protected Object	clone()	
	void	flatten()	

 Flatten the entire form.

	FormElement	getElement(String name)	
Return the specified element from the form.

	Map<String,FormElement>	getElements()	
Return a map of all the elements in the form.

	String	getName(FormElement element)	
Given a FormElement, return the name by which
 this element is stored in the form, or null if
 it doesn't exist in this form.

	PDF	getPDF()	
Return the PDF associated with this form

	InputStream	getXFAElement(String packet)	
Returns the entire XFA stream, or the specified packet from the XFA form as an
 InputStream.

	boolean	isXFA()	
Return true if this Form is XFA enabled

	void	putLiteral(String key,
 String tokens)	
Put a literal token sequnce.

	void	rebuild()	
Call the FormElement.rebuild() method on each element that requires it.

	FormElement	removeElement(String name)	

 Remove the specified element from the form, if it exists.

	void	removeXFA()	
Removes the XFA elements from the form.

	void	renameAllElements(String prefix,
 String suffix)	
Rename all the elements in the form by adding a prefix and/or
 suffix to their names.

	void	renameElement(String fromname,
 String toname)	
Rename an element in the form.

	void	setBackgroundStyle(PDFStyle style)	
Set the default background style for all new elements added to the form.

	void	setTextStyle(PDFStyle style)	
Set the default text style for all new elements added to the form.

	void	setXFADatasets(String datasets)	

 Sets the values in this form according to the supplied XFA "datasets" object.

	void	setXFAElement(String packet,
 String data)	

 Override a section (or "packet") of the XFA data.

	String	toString()	

	

Methods inherited from class java.lang.Object

equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

	

	

Method Detail

	
getPDF

public PDF getPDF()

Return the PDF associated with this form

	Since:
	2.8

	
getElements

public Map<String,FormElement> getElements()

Return a map of all the elements in the form. Each key
 in the Map is a String representing the name of the
 element, and the corresponding value is the FormElement. The
 returned map can be modified to add or remove elements from the form.
 The fields are stored in the order they are added to the Map.

	Returns:
	a Map containing all the form elements
	Since:
	2.0

	
addElement

public void addElement(String name,
 FormElement element)

 Add an element to the form. Although a form can contain as many elements
 as you like, currently only a single signature with a state of
 FormSignature.STATE_PENDING can be added to each document.
 This method is identical to calling:

 form.getElements().put(name, element);

	Parameters:
	name - the name of the form element
	element - the element to add to the form
	Throws:
	IllegalStateException - if the element already exists in the form
	Since:
	1.1.13

	
getElement

public FormElement getElement(String name)

Return the specified element from the form. This method is almost identical to calling:

 FormElement element = form.getElements().get(name);

 The difference is that since 2.4.3, if an element with that name does not exist, each elements
 description (as returned by FormElement.getDescription()) is checked for a match. If
 exactly one element is found that matches, that element is returned. This is primarily an
 ease-of-use change to cope with the long field names required by the XFA architecture.

	Parameters:
	name - the name of the form element
	Returns:
	the specified element, or null if it doesn't exist
	Since:
	1.1.13

	
removeElement

public FormElement removeElement(String name)

 Remove the specified element from the form, if it exists.
 This method is identical to calling

 FormElement element = form.getElements().remove(name);

	Parameters:
	name - the name of the form element to remove
	Returns:
	the removed element, or null if it didn't exist

	
renameElement

public void renameElement(String fromname,
 String toname)

Rename an element in the form. If the specified element
 name does not exist, an IllegalArgumentException
 is thrown. Since 2.0 the element keeps the same ordering in the form if possible.

	Parameters:
	fromname - the original name of the form element
	toname - the new name of the form element
	Throws:
	IllegalArgumentException - if the specified element does not exist
	Since:
	1.1.23

	
renameAllElements

public void renameAllElements(String prefix,
 String suffix)

Rename all the elements in the form by adding a prefix and/or
 suffix to their names. This method is useful when merging two
 copies of the same document together - as each field must have
 a unique name, this method can be used to rename the fields in
 the first copy to "Name1", "Phone1", in the second copy to "Name2",
 "Phone2" and so on. The elements keep the same ordering in the form.

	Parameters:
	prefix - the prefix to add to all element names - may be null
	suffix - the suffix to add to all element names - may be null
	Since:
	2.0

	
clear

public void clear()

Remove all the elements from the form

	Since:
	1.2.1

	
getName

public String getName(FormElement element)

Given a FormElement, return the name by which
 this element is stored in the form, or null if
 it doesn't exist in this form.

	Returns:
	the name of this element or null if it's not in the Form

	
setBackgroundStyle

public void setBackgroundStyle(PDFStyle style)

Set the default background style for all new elements added to the form.
 This can be overridden by the WidgetAnnotation.setBackgroundStyle(org.faceless.pdf2.PDFStyle)
 method in the WidgetAnnotation class. The default is a white
 background with a plain black border

	Parameters:
	style - the default back style for new form elements
	Since:
	1.1.23
	See Also:
	WidgetAnnotation.setBackgroundStyle(org.faceless.pdf2.PDFStyle)

	
setTextStyle

public void setTextStyle(PDFStyle style)

Set the default text style for all new elements added to the form.
 The style must include a font and a fill color to draw the text in.
 If a font size of 0 is specified, an appropriate size is chosen for
 each widget (the equivalent of "Auto" font size in Acrobat). Like
 background styles, this can be overridden for each widget.
 The default is black auto-sized Helvetica.

	Parameters:
	style - the default text style for new form elements
	Since:
	1.1.23
	See Also:
	WidgetAnnotation.setTextStyle(org.faceless.pdf2.PDFStyle)

	
flatten

public void flatten()

 Flatten the entire form. Calls FormElement.flatten() on every element in
 the form and then delete it, so only the visible appearance of the form remains.
 Provided the user is not going to edit the values in the form, flattening a form
 before rendering is an extremely effective way to reduce the size of the document.

 Since 2.10.6 this also removes the XFA content of a PDF, by calling removeXFA().

 Note that if you use JavaScript to format the field before display, this will
 not be taken into used when the field is flattened. Only the exact
 value returned by FormElement.getValue() will be used.

	Since:
	2.0
	See Also:
	FormElement.flatten(),
PDFAnnotation.flatten()

	
isXFA

public boolean isXFA()

Return true if this Form is XFA enabled

	Since:
	2.17.1

	
removeXFA

public void removeXFA()

Removes the XFA elements from the form. This strips out the entire XFA structure from the PDF.
 The resulting document will probably work in Acrobat 6.0, but will no longer be maintainable
 by Adobe LiveCycle.

	Since:
	2.6.6

	
getXFAElement

public InputStream getXFAElement(String packet)

Returns the entire XFA stream, or the specified packet from the XFA form as an
 InputStream. For instance, to extract the datasets from the XFA
 form and convert it to a DOM tree you could do the following:

 InputStream in = pdf.getForm().getXFAElement("datasets");
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = factory.newDocumentBuilder();
 Document doc = db.parse(new InputSource(in));

 Note that prior to 2.6.9, the initial "xml" processing instruction wasn't included
 in the response for any packets other than null.

	Parameters:
	packet - the XFA section that should be returned, or null to
 return the entire XFA object as a single stream. Typical values would be
 datasets, template etc.
	Returns:
	the specified XFA section, or null if no such section exists.
	Since:
	2.6.6
	See Also:
	setXFADatasets(java.lang.String)

	
setXFADatasets

public void setXFADatasets(String datasets)
 throws SAXException

 Sets the values in this form according to the supplied XFA "datasets" object.
 The "datasets" parameter must consist of a value XFA datasets object, similar to
 the content returned by form.getXFAElement("datasets").

 Note that the dynamic creation of repeating subforms which is a feature of XFA
 is not supported by this library. The fields you want to populate have to already
 exist in the PDF.

	Throws:
	SAXException - if dataset is not a valid XFA dataset object.
	Since:
	2.6.6
	See Also:
	getXFAElement(java.lang.String),
setXFAElement(java.lang.String, java.lang.String),
PDF.importFDF(org.faceless.pdf2.FDF)

	
setXFAElement

public void setXFAElement(String packet,
 String data)
 throws SAXException

 Override a section (or "packet") of the XFA data. This method should be used with extreme caution -
 it is intended for those with a good knowledge of XFA, and it's very easy to generate
 a document with this method that is invalid. For general updating of the XFA
 the setXFADatasets() method is more useful. Specifying "datasets"
 as the packet simply calls that method, otherwise no validation is performed on the
 supplied data and the PDF is simply updated with that string.

 We're aware getXFAElement() returns an InputStream
 and this takes a String. Ideally getXFAElement would have returned a
 Reader, but the API is set now and the benefits of changing it minimal. Forgive
 our inconsistancy. Here's an example showing how to read and write an XFA packet,
 correctly allowing for encoding.

 import javax.xml.transform.*;
 import javax.xml.transform.stream.*;

 StreamSource in = new StreamSource(form.getXFAElement(element));
 StringWriter out = new StringWriter();
 TransformerFactory factory = TransformerFactory.newInstance();
 Transformer transformer = factory.newTransformer();
 transformer.transform(in, new StreamResult(out));
 form.setXFAElement(element, out.toString());

	Parameters:
	packet - the XFA section to update - "template", "datasets" or similar.
	data - the data to set that packet to.
	Throws:
	SAXException - if section is "datasets" and data is not a valid XFA dataset object.
	Since:
	2.7.9
	See Also:
	getXFAElement(java.lang.String),
setXFADatasets(java.lang.String)

	
rebuild

public void rebuild()

Call the FormElement.rebuild() method on each element that requires it.
 Generally not necessary to call directly, but can be called from the EventDispatchThread
 in the viewer to control when and on which thread these operations are run on

	Since:
	2.16

	
toString

public String toString()

	
putLiteral

public void putLiteral(String key,
 String tokens)

Put a literal token sequnce. For debugging

	Parameters:
	key - the key
	tokens - the token sequence, eg "true" or "/foo" or "[/Foo/Bar]". No refs, just direct objects.

	
clone

protected Object clone()

	Overrides:
	clone in class Object

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2024 Big Faceless Organization

