
The Big Faceless Report Generator

User Guide

Version 1.1.63

Page 2 of 76

Introduction
Thank you for your interest in the Big Faceless Report Generator. This userguide will give you an overview of how to use the product,
and start you off with some simple examples. For more detailed and up-to-date information, please visit the product homepage at
http://bfo.com/products/report.

What is it?

The Report Generator is a java application for converting source documents written in XML to PDF. Build on top of our popular PDF
and Graph libraries, the Report Generator combines the features of the two and wraps an XML parser around them. Thanks to this, it
is now possible to create a PDF report direct from a database with little or no Java experience.

Features

Here’s a brief summary of the generator’s features

• Create dynamic reports using JSP’s, ASP’s, XSLT - whatever you would normally use to create dynamic HTML pages

• Simple HTML-style XML syntax makes migration for HTML reports (and HTML programmers) relatively painless

• Use Cascading Style Sheets (level 2) to control the document look-and-feel

• Build Reports on top of existing PDF documents (Extended Edition only)

• Full support for autosized, nested tables, lists, hyperlinks, images and other familar HTML features

• Inline generation of graphs and charts, in full shaded 3D!

• Embed XML metadata directly in the PDF, following Adobes XMP™ specification

• Native Unicode support. No worrying about codepages, encodings and so on, it just works

• Embed and subset OpenType and Type 1 fonts, or use one of the 14 latin or 8 east-asian built in fonts

• 40 and 128-bit PDF Encryption, for eyes only documents. Digital signatures too.

• Auto-pagination of content with headers, footers and watermarks

• Use ICC color profiles, spot color and patterns for sophisticated color control

• Draw barcodes and simple vector graphics directly into the document using XML elements

The generator is written in 100% pure Java and requires only JDK 1.4 or better and a SAX XML parser to run. It is supplied with three
methods to create the PDF documents - a Servlet Filter, a Servlet or a Standalone application - and installs easily into any Java
environment.

http://bfo.com/products/report
http://bfo.com/products/report

Page 3 of 76

Getting Started

Installation

Be sure to remove any previous
versions of the “bforeport.jar” from the
CLASSPATH, as well as the “bfopdf.jar”
files from our PDF library product,
otherwise exceptions during class
initialization may result.

Installing the package is a simple matter of unzipping the distribution file and
adding the bforeport.jar file to your CLASSPATH. You will also need a
SAX parser - Java 1.4 and above are supplied with one, but for those forced to
run older JVMs we recommend Xerces.

Several other files are supplied with the package. As well as this userguide and
the API documentation under the docs directory, two sample applications are
included in the example directory - a standalone XML to PDF application, and
a Java Servlet. Several sample XML documents are in example/samples,
and several dynamic samples which require a Servlet engine are under
examples/dynamic.

For all modern webservers, it is enough to copy the bforeport.jar file to the WEB-INF/lib directory of your web application
and then set up the WEB-INF/web.xml file to use either the Filter or the ProxyServlet method of calling the Report Generator,
depending on whether your WebServer supports version 2.3 of the Servlet Specification or not. To find out, we’d suggest trying the
filter method first. If it doesn’t work, fall back to the Proxy Servlet.

Creating PDFs from Applications

The API for the report generator is extremely simple. Generally you only require three lines to be added to your program to create a
PDF Report from XML.

A simple example of this is the SampleApplication.java example, supplied with the package in the example directory. To
use it, first, ensure the CLASSPATH is set to include your SAX parser, then run the command:

 C:\BFOREPORT\EXAMPLE> java SampleApplication samples\HelloWorld.xml

This creates the PDF document samples\HelloWorld.pdf, which you can check with your PDF viewer.

To add PDF producing code to your own package is simple. Here’s an example method which would take the URL of an XML file and
an OutputStream to write the PDF to. The PDF specific lines are in bold

 import java.io.*;
 import org.faceless.report.ReportParser;
 import org.faceless.pdf.PDF;

 public void createPDF(String xmlfile, OutputStream out)
 {
 ReportParser parser = ReportParser.getInstance();
 PDF pdf = parser.parse(xmlfile);
 pdf.render(out);
 out.close();
 }

Page 4 of 76

Creating PDFs using the Servlet 2.3 Filter

For servlet environments running the Servlet 2.3 or later environment, such as Tomcat, the recommended way to create dynamic PDF
documents is using the Filter included in the JAR file supplied with the package. More information on filters is available from http://
java.sun.com/products/servlet/Filters.html. To use it, the WEB-INF/web.xml file needs to be edited to map the PDF Filter to certain
requests.

Here’s an example web.xml file which maps any requests to /pdf/* to be run through the PDF filter. Lines specific to the PDF
filter are in bold.

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd"
 >

 <web-app>

 <filter>
 <filter-name>pdffilter</filter-name>
 <filter-class>org.faceless.report.PDFFilter</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>pdffilter</filter-name>
 <url-pattern>/pdf/*</url-pattern>
 </filter-mapping>

 </web-app>

Once this rule is added to web.xml and the servlet engine restarted, an XML document will be automatically converted to PDF
before it is returned to the browser. For example, to convert the file /pdf/HelloWorld.xml to a PDF and view it in the browser,
simply load the URL http://yourdomain.com/pdf/HelloWorld.xml.

Only files with a mime-type of text/xml will be processed, so images and other non-xml files in this path will be returned
unaltered. See the API documentation for more detailed information.

If the XML file is being returned directly to the browser rather than being converted to PDF, this is probably caused by the mime-type
not being set correctly. For dynamic XML documents like those created from JSP or CGI, the mime-type must be explicitly set by the
document author. For static files, the .xml extension must be mapped to the text/xml mimetype - this is done by adding the
following block to your web.xml file:

 <mime-mapping>
 <extension>xml</extension>
 <mime-type>text/xml</mime-type>
 </mime-mapping>

Creating PDFs using the Proxy Servlet

The other option when displaying dynamic PDFs from a Servlet is to use the Proxy Servlet. As the name suggests, this is a servlet
which relays HTTP requests from a browser, reads the response and converts it to a PDF before sending it back to the browser.

http://java.sun.com/products/servlet/Filters.html
http://java.sun.com/products/servlet/Filters.html
http://bfo.com/products/report/docs/api/org/faceless/report/PDFFilter.html

Page 5 of 76

Although the “filter” method described previously is much simpler to install and use, the proxy servlet has a couple of advantages:

• Can be used by Servlet engines supporting only the Servlet 2.2 specification

• Can proxy requests to different webservers, or even different domains - although care must be taken when doing this, as session
information may not be passed on.

The disadvantages are mainly that it requires the abstract PDFProxyServlet servlet to be extended and the getProxyURL
method implemented - so you have to write some code before you can use it. Also, the current version doesn’t support the POST
method for proxying requests.

An example proxy servlet called SampleServlet.java is supplied with the package in the example directory. Only the
getProxyURL method needs to be implemented - the contract for this method is “given the incoming HttpServletRequest,
return the absolute URL of the XML document to be converted or null if an error occurred”.

Here’s the method from the supplied SampleServlet, which extracts the XML documents URL from the “PathInfo” of the request
- this is anything in the URL path to the right of “/servlet/SampleServlet”.

 public String getProxyURL(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 URL url=null;
 String query = req.getPathInfo();
 try {
 if (query==null) throw new MalformedURLException();
 URL thisurl = new URL(HttpUtils.getRequestURL(req).toString());
 url = new URL(thisurl, res.encodeURL(query));
 } catch (MalformedURLException e) {
 res.sendError(404, "Invalid URL \""+query+"\"");
 }
 return url.toString();
 }

With this example, if the servlet was placed in the WEB-INF/classes directory as SampleServlet.class, then to load and
convert an example called /HelloWorld.xml just enter the URL
http://yourdomain.com/servlet/SampleServlet/HelloWorld.xml.

Obviously this is a simple example, and it’s fully expected that smarter proxies will be written with error checking and the like. The
main things to remember when implementing this method are:

• The returned URL must be absolute. Here we ensure this by making the requested URL relative to thisurl, which is the URL of
the current request.

• If something goes wrong, this method should return null and an error should written to the HttpServletResponse.

For those requiring more complete control over the conversion process, source code for the PDFProxyServlet is supplied in the
docs directory.

Page 6 of 76

Creating PDFs using a transformer

When the XML to be converted is a result of one or more transformations, the PDF can be created as the end result of the chain. The
transformations can either be a handwritten XMLFilter, like the SampleTransformer.java example supplied with the
package, or the result of an XSL transformation. This saves having to serialize and deserialize the XML, although it does require at
least a SAX 2.0 parser. Here’s an example, which is also supplied with the download package as SampleTransformer.java:

 import java.io.*;
 import org.faceless.report.ReportParser;
 import org.faceless.pdf.PDF;
 import org.xml.sax.*;
 import org.xml.sax.helpers.*;

 public void createPDF(String xmlfile, OutputStream out)
 throws TransformerException, IOException
 {
 // Create your filter, either explicitly or using
 // the SAXTransformerFactory.newXMLFilter() method
 //
 XMLReader reader = XMLReaderFactory.createXMLReader();
 XMLFilter filter = new MyFilter(reader);

 InputSource source = new InputSource(xmlfile);
 ReportParser parser = ReportParser.getInstance();
 PDF pdf = parser.parse(filter, source);
 pdf.render(out);
 out.close();
 }

Requesting PDF documents via HTTPS

Whether using the Proxy Servlet or the Filter, in principle requesting a PDF document over an SSL encrypted session is identical to
requests using normal HTTP. In practice however, many web servers are only set up to handle incoming HTTPS requests, not
outgoing. This is easy to test - add the line

 java.net.URL url = new java.net.URL("https://localhost");

to any servlet or JSP, and run it. If you get a MalformedURLException complaining of unknown protocol: https, then
your web server isn’t set up to allow outgoing HTTPS requests - more specifically, this is caused by the HTTPS protocol handler
either not being installed or not being registered with the web-application security handler.

Prior to version 1.1 this was an irritating problem. Any relative links in the document are relative to the base URL of the document,
and if it was requested via an HTTPS URL, these links will themselves be HTTPS (in practice, even documents with no relative links
were causing problems, as the SAX parsing routines require a base URL regardless). In version 1.1 we added a couple of ways to
workaround this issue. The first is all done behind the scenes. If a PDF is requested via HTTPS, but the webserver can’t handle
outgoing HTTPS requests, the base URL of the document is internally downgraded to HTTP. This isn’t a security risk, because any
requests to relative URLs for images, stylesheets and so on are all made from the server to the server - ie. the requests are made to
localhost. The completed PDF is still sent back to the browser over a secure link.

If you don’t like this, or for some reason it won’t work (for example, because your webserver only handles HTTPS and not HTTP),
there are a couple of other options. First, you can install the JSSE package and register the HTTPS protocol handler (this was the only
option for earlier versions of the Report Generator). This can be done either by upgrading to Java 1.4, which includes JSSE1.0.3, or by

Page 7 of 76

installing it separately. The broad details on how to do this are on the JSSE website at http://java.sun.com/products/jsse/install.html -
you can probably find specific instructions for your webserver through your normal support channels.

Please remember this problem is not specific to the report generator, but applies to any web application that needs to create an HTTPS
URL. Although every webserver will have a different way of doing this, we did find some Tomcat 4.0 specific instructions at http://
www.planetsaturn.pwp.blueyonder.co.uk/tomcatandhttps) which you may be able to adapt if you can’t find anything for your server.

The second option is much simpler. You can use the new base meta tag to set the base URL of the document to any value you like.
For example, to get all relative links in the document to load from the filesystem, rather than via the webserver, add something like this
to your code, immediately after the <head> tag:

 <pdf>
 <head>
 <meta name="base" value="file:/path/to/webapplication"/>
 </head>

This will cause relative links in your document like to be resolved as
file:/path/to/webapplication/images/logo.gif.

http://java.sun.com/products/jsse/install.html
http://www.planetsaturn.pwp.blueyonder.co.uk/tomcatandhttps
http://www.planetsaturn.pwp.blueyonder.co.uk/tomcatandhttps

Page 8 of 76

Creating the XML

A simple example

 1. <?xml version="1.0"?>
 2. <!DOCTYPE pdf PUBLIC "-//big.faceless.org//report" "report-1.1.dtd">
 3.
 4. <pdf>
 5. <head>
 6. <meta name="title" value="My First Document"/>
 7. </head>
 8. <body background-color="yellow" font-size="18">
 9. Hello, World!
 10. </body>
 11. </pdf>

This simple document creates a single page PDF with the text “Hello, World!” in 18pt text at the top of the first page. Barring the first
two lines, it should look fairly familiar to anyone that’s ever created an HTML page.

Although it’s simple, there are a couple of key points here. Let’s go through this example a line at a time.

Line 1. the XML declaration <?xml version="1.0"?> must always be included as the very first line of the file.

Line 2. the DOCTYPE declaration tells the XML parser which DTD to use to validate the XML against. See here for more
information on DTDs.

Line 4. the top level element of the XML document must always be pdf.

Line 5. like HTML, the document consists of a “head”, containing information about the document, and a “body” containing the
contents of the document.

Line 6. a trap for HTML authors. In XML an element must always be “closed” - this means that <pdf> must always be matched by
</pdf>, by and so on. When an element has no content, like
, or <meta>, it may close itself by
writing it as we’ve done here - <meta/>

Line 8. The <body> element has some attributes set - background-color and font-size. In XML, every attribute value
must be quoted - this can be frustrating for HTML authors used to typing <table width=100%>.

Creating Dynamic Reports

A report generator isn’t much use if it can’t create reports based on dynamic data - creating customer account statements on-the-fly
from database queries, for example.

Rather than use custom elements to query the database and include the results, we’ve gone with a much more flexible solution and
separated the generation from the PDF conversion. This means you can use your favorite technology to create the dynamic XML - we
prefer JSP, but ASP, XSLT, CGI or any other solution will do - and the Filter or Proxy Servlet will convert that to PDF transparently.

Page 9 of 76

Here’s an example showing how to create a PDF with the current date from a JSP. There are some more examples in the
examples/dynamic directory of the download package.

 1. <?xml version="1.0"?>
 2. <%@ page language="java" contentType="text/xml; charset=UTF-8"%>
 3. <!DOCTYPE pdf PUBLIC "-//big.faceless.org//report" "report-1.1.dtd">
 4.
 5. <pdf>
 6. <body font-size="18">
 7. Today is <%=new java.util.Date()%>
 8. </body>
 9. </pdf>

This is very similar to the previous example. We’ve marked the two changes in bold.

The first one is the most important. You need to set the page Content-Type to text/xml, in order for it to be converted to a PDF. You
should also set the charset to UTF-8, like we’ve done here. This is because of an important difference between HTML and XML -
the default characterset for HTML (and therefore for JSPs) is ISO-8859-1, but the default for XML is UTF-8. Of course, if you’re only
using 7-bit ASCII characters characters you can leave this out, but it’s a good idea to do it anyway.

You may have noticed that the JSP page directive is the second line, rather than the first (as is normally the case with JSP’s) - this is
because the <?xml directive must be on the first line of the XML - most SAX parsers will throw an error if it’s not.

The second change is on line 7, where we print the current date using a JSP directive. By now we hope it’s fairly clear that creating a
dynamic report is basically the same as creating a dynamic HTML document - provided the XML syntax is adhered to.

The DOCTYPE declaration

A quick word about the DOCTYPE declaration (the third line in the example above). The DOCTYPE, or DTD, is used by the XML
parser to store information about the structure of the document - which elements can contain which, and so on. The XML document
refers to the DTD using two strings - the “public” identifier and the “system” identifier, which are the values
“-//big.faceless.org//report” and “report-1.1.dtd” in the example above.

In practise, XML documents include a DTD for two main reasons:

• To automatically validate the XML document against the DTD

• To convert named entities like into character values

XML validation isn’t used in this package (we do our own validation instead), so the main reason this is required is to convert named
entities (see Appendix B for a list of named entities understood by the Report Generator DTD). If you don’t use any, you can leave the
DOCTYPE line out with no ill effect.

The actual DTD is stored in the JAR file. The Report Generator recognises the public identifier
“-//big.faceless.org//report” and loads the DTD directly from the JAR, so most of the time you won’t need to worry
about it. As always, there are a couple of exceptions to this:

• Several XML parsers (including Allaire JRun 3.1 and Caucho Resin up to 2.1.3) are unable to load a DTD from a JAR, and requires
the DTD to be loaded from a URL

• When creating a PDF from a javax.xml.transform.Source using the transform method, the DTD cannot be read from
the jar, and must be loaded from a URL.

• If you’re trying to examine or edit the XML using a “smart” XML tool, like Internet Explorer 5 (we use the term “smart” loosely),
the DTD needs to be accessible.

Page 10 of 76

In all these cases, the DTD will be loaded from the URL specified by the “system” identifier. As the DTD file is supplied in the docs
directory of the download package, it can be copied into an appropriate directory for your webserver to serve. An alternative is to
reference the DTD directly from the Big Faceless Organization web server by changing the DOCTYPE declaration to this:

 <!DOCTYPE pdf PUBLIC "-//big.faceless.org//report"
 "http://bfo.com/products/report/report-1.1.dtd">

(this is not recommended for regular use, as loading it from a remote server will slow down the parsing process)

Namespaces: Embedding XML Metadata

One of the new features adding in SAX version 2 was the concept of XML “namespaces”. Namespaces don’t play a major role in the
Report Generator, as the end result is a PDF rather than another XML document. The role they do have relates to XML Metadata,
which, with the arrival of Acrobat 5.0, can be embedded directly into a PDF document for later extraction. Adobe call this XMP, and
more information on this is available at http://www.adobe.com/products/xmp.

The Report Generator automatically recognises whether a SAX 2.0 parser is being used, and will become “namespace aware” if it is.
In this case, any elements with a namespace other than http://big.faceless.org/products/report will be considered
as XMP metadata, and will be embedded as-is into the PDF document. (Note that this is the default namespace for any element
without a namespace explicitly specified). Because of the way this works, XMP metadata cannot be embedded with a SAX 1.0 parser
- an error will be thrown instead. As it’s very difficult to work with XMP without using namespaces, this shouldn’t be a concern.

Not every structure in a PDF document can contain XML metadata - currently, the only tags that will accept it are <pdf> (to specify
metadata about the entire document), (to specify metadata about an image), <body> (to specify metadata about the first page)
and <pbr> (to specify metadata about the following page). Metadata that is specified on any other tag will be silently dropped.

Here’s a brief example showing how this could be put to use - an image is embedded in a document along with information on from
whence it came. Content in bold is not embedded as metadata but is parsed and processed by the Report Generator

 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1"
 xmlns:tc="http://www.w3.org/2000/PhotoRDF/technical-1-0#">
 <rdf:Description about="">
 <dc:type>image</dc:type>
 <dc:title>Fishing Boat</dc:title>
 <dc:description>Photo of a boat on the coast in Ghana</dc:description>
 <dc:creator>mike@bfo.com</dc:creator>
 <dc:date>1999-04-20</dc:date>
 <tc:camera>Canon EOS 100</tc:camera>
 <tc:lens>Sigma 28mm</tc:lens>
 </rdf:Description>
 </rdf:RDF>

For a full example have a look at the MetaData.xml example in the download package.

http://www.adobe.com/products/xmp

Page 11 of 76

Styles
The look and feel of a document is defined using Cascading Stylesheets (level 2), or CSS2 - the same system used by HTML. The full
CSS2 specification is online at http://www.w3.org/TR/REC-CSS2, and unlike many specifications it’s clear enough to be understood
by mere mortals - we recommend reading it. We support most, but not all of the specification - see the appendices for details.

The first way to set the style for an element is inline. Unlike HTML, there is no difference between a “style” attribute and a regular
attribute - whereas in HTML to specify an inline style you must write <table style="background-color:red">, in XML
you could simply write <table background-color="red">. All the examples up until now have used inline styles.

Although in many cases this method is appropriate, if the same style is used more than once in a document it’s generally easier to use a
“stylesheet” - a collection of CSS2 rules defined in the HEAD of the document which set attributes for various elements in the BODY.

Stylesheet definitions

Stylesheets can be included directly in the document or linked in from an external file. In both cases the syntax is the same. A
Stylesheet consists of one or more (selector, attribute) pairs - each selector matching certain elements in the document, and the
attributes defining which attributes to set for those elements. Here’s an example:

 body { size:Letter; padding:0.5in; }
 H1, H2 { font-family:Times; }
 .example { background-color:yellow; }

This example sets the “size” attribute for the BODY element to “Letter” and it’s “padding” attribute to “0.5in”, sets the “font-family”
attribute for all H1 and H2 elements to “Times” and sets the background color for any elements with the “class” attribute set to
“example”, to yellow.

The CSS2 specification gives a great deal of control over the selector. Here’s a list of the different options.

Pattern Meaning

* Matches any element

E Matches any E element (i.e., an element of type E)

E F Matches any F element that is a descendant of an E element

E > F Matches any F element that is a child of an element E

E:first-child Matches element E when E is the first child of its parent

E:last-child Matches element E when E is the last child of its parent (custom extension of CSS2)

E + F Matches any F element immediately preceded by an element E

E - F Matches any F element immediately followed by an element E (custom extension of CSS2)

E.warning Matches any E element with the “class” attribute equal to “warning”

E#myid Matches any E element with the “id” attribute equal to “myid”

E:lang(fr) Matches any E element where the “lang” attribute begins with “fr” - including, for example, “fr_CH”

E[align=right] Matches any E element where the “align” attribute is set to the value “right”

E[align] Matches any E element where the “align” attribute is set - the actual value it is set to is irrelevant

.warning Matches any element with the “class” attribute equal to “warning”

http://www.w3.org/TR/REC-CSS2

Page 12 of 76

Pattern Meaning

#myid Matches any element with the “id” attribute equal to “myid”

Matching certain types of element

To match elements of a specific type in the document is the simplest type of rule. The following example matches every H1 element in
the document, and sets the color to red.

 H1 { color:red; }

Classes and ID’s

An HTML-specific extension to CSS2 which we have adopted is the concept of matching “classes” and “ids”. This allows elements in
the document to be grouped together, or even to match individual elements. For example, every example in this document is printed in
a box on a light blue background. Here’s how we do it:

 PRE.example { background-color:#D0FFFF; padding:4; border:1; }

Then in the document we simply place each example inside a <PRE class="example"> element.

As of version 1.1.10, each element can belong to multiple classes. For instance, this paragraph would have a red background and a
black border.

 .red { background-color:red; }
 .outline { border:thin solid black; }

 <p class="red outline">

Individual elements can be referenced by ID as well. For example, to reference a specific diagram in the document you might set it’s
“id” attribute to “diagram1”, and then use the following stylesheet rule:

 #diagram1 { border:1; }

Each page in the document is given a unique ID equal to “page” followed by the current pagenumber. For example, here’s how to set
the size and background color of the first page.

 #page1 { size:A4-landscape; background-color:yellow; }

One additional advantage of giving an element an ID is that it can be referenced from outside the document. This can be used to load a
PDF at a specific page or section of a page, but only works with documents loaded with the Internet Explorer or Netscape plugin from
a webserver. For example, to open the document to the block with an ID of “chapter2”, put the following hyperlink in your HTML
document:

 See Chapter 2

Page 13 of 76

Descendants, Children and Siblings

At times, authors may want to match an element that is a descendant or child of another element in the document tree - for example
“match any H1 elements on the first page” (a descendant relation), or “match any P elements that are children of BODY” (a child
relation). These two rules can be described by the following stylesheet entries:

 #page1 H1 { color:red; } BODY > P { color:red; }

In the first example, the descendant relation is specified by the whitespace between the #page1 selector and the H1 selector. These
can be chained together as necessary - for example DIV * P matches any P element that is the grandchild or later descendant of a
DIV.

In the second example, the child relation is specified by the > symbol. Only P elements directly under the BODY element will be
matched.

Sometimes it may also be necessary to match elements based on their siblings, rather than their ancestors - for example, to set the
vertical space for an H2 element when it’s immediately preceded by an H1 element. Another useful option is to match an element that
isn’t preceded by another element - it’s the first child of it’s parent. This is useful to set a default style for the first column of a table,
for example. The following two examples show how to describe these situations.

 H1 + H2 { margin-top:0pt; } td:first-child { font-weight:bold; }

Two custom extensions which we support but CSS2 doesn’t are the last-child psuedo-element and the “previous sibling” relation.
These are the opposite of the two rules shown above, and can be matched like this:

 H2 - H1 { margin-bottom:0pt; } td:last-child { font-weight:bold; }

Grouping

When several identical attributes are to be set for different elements, they may be grouped into a comma separated list. The following
two examples are identical:

 H1 { font-family:Times; }
 H2 { font-family:Times; }
 H3 { font-family:Times; }

 H1, H2, H3 { font-family:Times; }

Language and Attribute selectors

New in version 1.1 is the ability to select attributes based on the language of an element, as defined by the lang attribute, or based on
other attributes. The language selector is extremely useful when creating a document that will contain text in more than one language.
For example, the following rules set the default font for different languages and the default page size for Americans and Canadians.
They are included in the default stylesheet.

 body:lang(ko) { font-family: HYMyeongJo; }
 body:lang(ja) { font-family: HeiSeiKakuGo; }
 body:lang(zh_CN,zh_SG) { font-family: MSung; }
 body:lang(zh_TW,zh_HK) { font-family: STSong; }

 body:lang(en_US,en_CA) { size: Letter; }

Page 14 of 76

The language of an element can be set using the lang attribute in the same way as HTML, by using the XML-specific attribute
xml:lang, or if neither are set it defaults to the Locale that the Report Generator is running in.

As for the attribute selectors, they’re easier to understand with an example. In HTML, an image that is also a hyperlink traditionally
has a blue-border around it. This can be done with the following stylesheet entry:

 img[href] { border: medium solid blue; }

Similarly one could create appropriate margins on a floating block by using something like the following, which puts left margins on a
right-floated DIV, and right-margins on a left-floated DIV.

 div[float=right] { margin-left: 10pt }
 div[float=left] { margin-right: 10pt }

Applying Stylesheets

So how to include this style information in the document? The following three examples show different ways to get the same result.

First, you can include the
attributes inline. Quick, but
inflexible.

 <?xml version="1.0"?>
 <!DOCTYPE pdf PUBLIC "-//big.faceless.org//report" "report-1.1.dtd">

 <pdf>
 <body background-color="yellow" font-size="18">
 Hello, World!
 </body>
 </pdf>

 <?xml version="1.0"?>
 <!DOCTYPE pdf PUBLIC "-//big.faceless.org//report" "report-1.1.dtd">

 <pdf>
 <head>
 <style>
 body { background-color:yellow; font-size:18 }
 </style>
 </head>
 <body>
 Hello, World!
 </body>
 </pdf>

Second, you can embed the
stylesheet directly in the
document.

Third, for maximum flexiblity,
create the stylesheet as a separate
file. The first file here is called
style.css, and we load it
using the LINK element.

Relative URLs referenced from
the stylesheet will be relative to
the sheet, not the document that
uses it.

 body { background-color:yellow; font-size:18 }

 <?xml version="1.0"?>
 <!DOCTYPE pdf PUBLIC "-//big.faceless.org//report" "report-1.1.dtd">

 <pdf>
 <head>
 <link type="stylesheet" src="style.css"/>
 </head>
 <body>
 Hello, World!
 </body>
 </pdf>

Page 15 of 76

Elements
Most of the XML elements we use are the same as HTML. In this section we’ll broadly describe what the various elements are - most
of them should be familiar, but there are a few new ones and a couple of important differences to others. See the reference section for a
full list and more detail.

Document Structure

Every report is defined by a single PDF element, which may contain an optional HEAD element, and must contain the mandatory
BODY element, which contains the actual content of the report. As PDF documents consist of multiple pages, the contents of the
BODY may be split into one or more pages - a process known as pagination.

Pagination

Generally speaking the Report Generator uses the following algorithm to place elements on the page.

1. Take the first element in the BODY and try to fit it on the current page.

2. If it can’t fit but it can be split in two, split it at the end of the page and carry on.

3. If it can’t be split into two halves, place it on the next page and carry on

This process can be altered in one of three ways.

• Using the “page-break-before”, “page-break-after” and “page-break-inside” attributes to control breaks between elements.

• Within paragraphs (the P, PRE, BLOCKQUOTE and H1 to H4 elements), set the “orphans” and “widows” attributes to control the
minimum number of lines that must remain at the end of a page (the orphans) and the minimum number that may be at the top of a
new page (the widows). These both default to 2.

• Using the PBR element to explicitly place page breaks

The first method, which is part of CSS2, allows authors to set various attributes on elements to either prevent or force pagebreaks. For
example, the default setting for the H1 to H4 elements is that they are never immediately followed by a page break. The stylesheet
entry looks like this:

 H1, H2, H3, H4 { page-break-after:avoid; }

Only some elements may be split and placed on multiple pages if they don’t fit - currently the TABLE, UL, OL and all the paragraph
elements listed above. To prevent one of these elements being split, set the “page-break-inside” attribute to “avoid”.

The third method uses the PBR element to split pages. This is especially useful when you want to change the format of the document,
as the page dimensions for the new page (and for all following pages) can be set explicitly.

Page 16 of 76

For example, lets say you want your report to have a cover page on A4 with a yellow background, the bulk of the report on normal A4
but also a special section at the end to be printed on landscape. Here’s how to do it:

 <pdf>
 <body size="A4" background-color="yellow">

 Contents of front page here

 <pbr background-color="white"/>

 Bulk of report here

 <pbr size="A4-landscape"/>

 Landscape section here

 </body>
 </pdf>

As well as setting page formats and colors, this method can also be used to set page margins and “macros” for setting headers and
footers.

Headers, Footers and Macros

To display headers and footers on the page, the Report Generator introduces the concept of a “macro” - a block of XML which can be
repeated multiple times throughout the document.

There are three different types of macro attribute, which can be used either on the BODY or PBR elemnts to set a macro for every
page, or for a specific page by using a #pagen entry in a stylesheet.

• header - to set the header of the page

• footer - to set the footer of the page

• background-macro - to set the background of the page

A macro is defined in the HEAD of the document inside a MACROLIST. Each macro must have an ID, which is how it’s referenced
later in the document. Here’s an example which sets a standard footer on each page:

 <pdf>
 <head>
 <macrolist>
 <macro id="myfooter">
 <p align="center">
 Page <pagenumber/> of <totalpages/>
 </p>
 </macro>
 </macrolist>
 </head>
 <body footer="myfooter" footer-height="20mm">

 Document contents here

 </body>
 </pdf>

Page 17 of 76

The “footer” attribute is the ID of the macro, and the “footer-height” attribute is the height required for the footer. If the document
contents require several pages, the footer will be placed on each one, unless there is a PBR element which changes the footer (or
removes it by setting footer="none"). The “header” attribute can be used the same way to set a header at the top of each page.

The “background-macro” element allows more control than the “background-image” and “background-color” attributes. A classic
example is placing a watermark on each page. Rather than use a bitmap image and set “background-image”, the background-macro
allows you to add custom XML to each page. The watermark can cover the whole page - including the header and footer if they’re
specified, but excluding any page margin or padding. Here’s an example which places the word “Confidential” on each page in light
gray:

 <pdf>
 <head>
 <style>
 #watermarkbody { font-size:80; font:Helvetica; color:#F0F0F0; }
 </style>
 <macrolist>
 <macro id="watermark">
 <p id="watermarkbody" rotate="-30" valign="middle" align="center">
 Confidential
 </p>
 </macro>
 </macrolist>
 </head>
 <body background-macro="watermark">

 Document contents here

 </body>
 </pdf>

Displaying the Page number

The current page number and the total number of pages in the document can be displayed in the document by means of two special
elements - PAGENUMBER and TOTALPAGES. These can be used inside a text paragraph - the “footers” example above shows how
they are used.

The current page number generally starts at one and increases by one for each page, but can be set specifically by using the
“pagenumber” attribute. This can be set on a BODY or PBR element to set the page number of the next page.

As well as just printing the current page number, the PAGENUMBER element can be used to print the page number of other elements
in the document. This comes into it’s own when creating a table of contents. Every item in the table of contents has an id tag - for
example, the header at the start of this paragraph has it’s id attribute set to “pagenumbers”. Then, in the table of contents, we can print
the page number of this section like so:

 <table>
 <tr>
 <td>Displaying the Page Number</td>
 <td><pagenumber idref="pagenumbers"/></td>
 </tr>
 </table>

Page 18 of 76

A mildly annoying feature of these two tags is that they cannot be measured accurately during the layout stage of the document. This
is obvious when you think about it - there’s no way to know how many pages are required until the whole document has been laid out.
Because of this the Report Generator takes a guess at the number of digits that might be required. This defaults to three, but since
1.1.12 can be set with the “size” attribute. For instance, if you know your document will have a maximum of 50 pages, you might
change your code to read

 Page <pagenumber size="2"/> of <totalpages size="2"/>

Another option added in the same release was the ability to display page numbers in formats other than decimal. The types available
are the same as for the “markertype” attribute in the OL tag - so for example, to number your pages with roman digits, try:

 <macrolist>
 <macro id="myfooter">
 <p align="center"><pagenumber type="roman-lower"/></p>
 </macro>
 </macrolist>
 </head>
 <body footer="myfooter" footer-height="0.5in">

Page Sizes

As a convenience, the Report Generator defines several standard sizes which can be used to set pages in the document to a standard
paper size - so <body size="A4"> is identical to <body width="210mm" height="297mm">. Here’s the list of known
sizes - every one of these can have the suffix “-landscape” appended to rotate the page size by 90 degrees - e.g. letter-
landscape.

ISO A series ISO B series ISO C series

A10 26mm × 37mm B10 31mm × 44mm C10 28mm × 40mm

A9 37mm × 52mm B9 44mm × 62mm C9 40mm × 57mm

A8 52mm × 74mm B8 62mm × 88mm C8 57mm × 81mm

A7 74mm × 105mm B7 88mm × 125mm C7 81mm × 114mm

A6 105mm × 148mm B6 125mm × 176mm C6 114mm × 162mm

A5 148mm × 210mm B5 176mm × 250mm C5 162mm × 229mm

A4 210mm × 297mm B4 250mm × 353mm C4 229mm × 324mm

A3 297mm × 420mm B3 353mm × 500mm C3 324mm × 458mm

A2 420mm × 594mm B2 500mm × 707mm C2 458mm × 648mm

A1 594mm × 841mm B1 707mm × 1000mm C1 648mm × 917mm

A0 841mm × 1189mm B0 1000mm × 1414mm C0 917mm × 1297mm

2A0 1189mm × 1682mm American sizes Other sizes

4A0 1682mm × 2378mm Letter 8.5in × 11in ID-2 107mm × 74mm

Common envelopes Legal 8.5in × 14in ID-3 125mm × 88mm

D1 110mm × 220mm Executive 7.5in × 10in OHP-A 250mm × 250mm

E4 280mm × 400mm Ledger 11in × 17in OHP-B 285mm × 285mm

Page 19 of 76

The Document Head

The HEAD element of the report contains information about the report. There are five different options that can be specified inside the
HEAD.

• Macros (described above) using the MACROLIST and MACRO elements

• Stylesheets, either externally using a LINK or internally using a STYLE element

• Non-standard fonts can be linked in using the LINK element. This is covered in the “Fonts” section later.

• Document meta information, such as report title, password and various PDF specific attributes can be set using the META element.

• Bookmarks can be specified using the BOOKMARKLIST and BOOKMARK elements

Meta information

The META element in the document HEAD requires a “name” and “value” attribute, which specifies which property of the document
to set. A number of properties are known to the Report Generator, and those that aren’t can be passed on to the calling process -
providing a convenient method of extending the capabilities of the generator. Here’s an example setting the title of the document.

 <pdf>
 <head>
 <meta name="title" value="My First Report"/>
 </head>
 </pdf>

Here’s a list of the various “names” that are recognised, ordered roughly from most useful to least useful (as we think anyway)

Name Value Description

base Base URL of the
document

Set the base URL of the document. All relative links in the document
will be interpreted as relative to this URL. If you’re going to set this, be
sure to set it before any stylesheets or fonts are loaded.

title The report title Set the title of the report

author The authors name Set the author of the report

subject The report subject Set the subject of the report

keywords a list of keywords Set the keywords for the report

output-profile the name of an output
profile

This can be set to cause the PDF to be written according to the rules of
a specific output profile . For more deta i l see the
org.faceless.pdf2.OutputProfile class. Valid values are
currently “Default”, “NoCompression”, “Acrobat4”, “Acrobat5”, “PDF/
X-1a”, “PDF/X-3 (No ICC)” and “PDF/X-3 (ICC)”

password a password The password to encrypt the report with

servlet-filename a filename (For Proxy Servlet and Filter use only) Set the PDF to be saved rather
than viewed directly by the browser, and set the name to give the PDF
document when it’s saved. This functionality may cause problems with
some browsers - see the Filter API documentation for more information

servlet-cache period of time (For Proxy Servlet only) Set the length of time the generated PDF is to
be cached by the Proxy Servlet. See the Proxy Servlet API
documentation for more information.

Page 20 of 76

Name Value Description

access-level print-none print-lowres
print-highres extract-
n o n e e x t r a c t -
accessibility extract-all
change-none change-
layout change-forms
change-annotat ions
change-all plain-
metadata

What permissions to give the application viewing the document. One of
each of the “print”, “extract” and “change” values should be specified in
a string, seperated with spaces. So, for example, <meta
name="access-level" value="print-all change-none
extract-none"/> would create a document that can be printed but
is not copyable or alterable. For 40-bit encryption, print-lowres is the
same as print-highres, extract can be “none” or “all”, and changes can
be “none”, “annotations” or “all”. The “plain-metadata” option will
cause XMP metadata in the document to be left unencrypted, although
this will result in a PDF that can only be loaded with Acrobat 6.0 or
later.

show-bookmarks true / false Whether to show the bookmarks pane when the document is first
opened

layout o n e - c o l u m n /
two-column-left /
two-column-right /
single-page

Instruct the PDF viewing application on how to display the document.
The default is single-page

encryption-algorithm 40bit / 128bit / aes The encryption algorithm to use to secure the document. If a password
or access-level is set, defaults to 40bit. “aes” will result in documents
that can only be opened in Acrobat 7.0 or later, but other than that is
identical to 128bit.

creator a program name Set the name of the program that created the original XML

viewer-fullscreen true / false Whether to open the PDF viewer in fullscreen mode

viewer-hidetoolbar true / false Whether to hide the toolbar of the PDF viewer when the document is
first opened

viewer-hidemenubar true / false Whether to hide the menubar of the PDF viewer when the document is
first opened

viewer-hide-windowui true / false Whether to hide the user-interface of the PDF viewer when the
document is first opened

viewer-fitwindow true / false Whether to resize the PDF viewer to fit the document size

viewer-centerwindow true / false Whether to center the PDF viewer window on the screen

security-password a password The password (if any) required to change the password of the document

Bookmarks

The documents “bookmarks” are the tree-like structure displayed in a pane on the left in Acrobat Reader. Sometimes called “outlines”,
these are an excellent way to provide easy navigation around larger documents.

The Report Generator controls bookmarks through the BOOKMARKLIST element, which contains one or more BOOKMARK
elements. These can themselves contain BOOKMARK elements, to create the tree structure. Each bookmark has a “name”, which is
the name displayed to the user in the PDF, and an optional “href”, which is the hyperlink to follow if the user clicks on the bookmark -
usually, but not necessarily, to a location in the document.

Page 21 of 76

We’ll cover more on Hyperlinks in a later section. For the moment, it’s enough to know that linking to a specific location in the report
is done by setting href="#id", where “id” is the ID of the element you want to link to. Here’s an example:

 <pdf>
 <head>
 <bookmarklist>
 <bookmark name="Chapter 1" href="#ch1"/>
 <bookmark name="Chapter 2" href="#ch2">
 <bookmark name="Chapter 2 part 2" href="#ch2pt2">
 </bookmark/>
 <bookmark name="Chapter 3" href="#ch3"/>
 </bookmarklist>
 </head>
 <body>
 <h1 id="ch1">

 Chapter one here

 <h1 id="ch2">

 Chapter two part one here

 <h2 id="ch2pt2">

 Chapter two part two here

 <h1 id="ch3">

 Chapter three here

 </body>
 </pdf>

The “expanded” attribute can be set to “true” to cause the specified bookmark tree to be opened by default. The “color”, “font-style”
and “font-weight” attributes may also be set to set the look of the bookmark entry, although this feature is ignored by PDF viewers
before PDF 1.4 (Acrobat 5.x)

Box Model

The “box model” is the name given to the layout model used by both CSS2 and the Report Generator. Coming to grips with how it
works will help you to control the layout of your reports.

Every element that is displayed in the body of the report is a box - be it a paragraph of text, a table, a bitmap image or even a page
itself. These boxes are usually positioned one after another down the page to make up the report.

All these elements have certain properties in common, which can be set by the various block attributes in the report generator. We’ll
cover some of these attributes now.

Padding, Margins and Borders

Every “box” placed in the document takes up a certain amount of space. As well as the obvious space required to display the content
of the box, such as the dimensions of an image, there is the space around the content as well, which separates it from it’s neighbors.

Page 22 of 76

The diagram above shows the various “shells” around the content of a box. Starting with the content and moving out, we have:

1. Padding - the space between the content of the block and the border, this has the same background color or image as the content
of the block.

2. Border - the optional border line surrounding the content of the block.

3. Margin - the space outside the border between this block and it’s neighbors. It’s always transparent.

The “padding”, “border” and “margin” attributes can be set to set the attribute for all four sides of the box, or “padding-top”,
“padding-right”, “padding-bottom” or “padding-left” etc. can be set to set the border, padding or margin for just one side.

The Report Generator also supports the “border-color” attribute to set the color of the border, the “border-style” attribute to set the
border line to solid, dotted, dashed and so on, and the custom “corner-radius” attribute, which allows the corners of the border to be
rounded. Border colors and styles can be set seperately for each side - for example

 div { border-top: dotted red; border-bottom: thick solid black; }

will draw a dotted red border above the DIV tag, and a thick solid black one below it.

Drawing the Background

Both the content and the padding of a box can optionally be drawn over a background. This can either be a color, by setting the
“background-color” attribute, or a bitmap image as set by the “background-image” attribute.

The background image can be drawn in one of several positions, as set by the “background-position” attribute. By default this is set to
“stretch”, which means the image is drawn once and stretched to fit the box. Other options are “repeat”, where the image is tiled
repeatedly to fill the box, or any combination of “top”, “middle”, “bottom”, “left”, “center” or “right” to draw the image once. PDF is
not as efficient as HTML at rendering background images, so the “repeat” setting should be used with care as it can result in long
delays for those viewing the document.

Unlike HTML, PDF images don’t have a fixed size. Instead, the size of the bitmap image on the page depends on the dots-per-inch, or
DPI of the image. For background images, this can be set using the “background-image-dpi” or “background-image-width” and
“background-image-height” attributes. These have the same function for background images as the “image-dpi”, “width” and “height”
attributes do for normal images - see the section on Images for more information.

Page 23 of 76

Here are some examples showing the effects of the different settings

background-image-position=“stretch” background-image-position=“repeat” background-image-position=“center middle”

Building on an existing PDF

A feature of the Extended Edition of the Report Generator is the ability to use a page from an existing PDF document as a
background, in the same was as you could use a background-image or a background-color. This is done using the
background-pdf attribute, which can be set to the URL of a PDF to include. Here’s an example:

 <?xml version="1.0"?>
 <!DOCTYPE pdf PUBLIC "-//big.faceless.org//report" "report-1.1.dtd">

 <pdf>
 <body background-pdf="original.pdf#page=2" font-size="18">
 Hello, World!
 </body>
 </pdf>

This simple example would create a single page document, with the words “Hello, World!” placed on top of the second page of the
“original.pdf” document. The pagenumber is specified by the “#2” in the URL - it can be left out, in which case the page that’s used
will be the same page as that in the current document - the first page is overlaid on page 1, the second is overlaid on page 2, and so on.
When the source document is out of pages it starts again at the beginning.

A useful example of this is a multi page invoice. Imagine you want to create an invoice, which will run over several pages. The first
page has the company logo and space for an address, whereas the remaining pages just have space for the invoice details. To do this
with the report generator, create a two page template using your favorite tool - Quark Express or MS Word, for example - and then do
something like the following example:

 <pdf>
 <head>
 <style>
 #page1 { background-pdf:original.pdf#page=1 }
 body { background-pdf:original.pdf#page=2 }
 </style>
 </head>
 <body>
 <p padding-left="1in" padding-top="1in">
 <!-- Address goes here -->
 </p>
 <table>
 <!-- Invoice details go here, covering as many pages as necessary -->
 </table>
 </body>
 </pdf>

Page 24 of 76

Note that this feature is not limited to pages! Theoretically an existing PDF could be used as the background for a table, a paragraph or
any other box.

Extended edition pricing information is available from the product homepage.

Positioning

As mentioned above, most of the time the “boxes” containing the XML elements are placed on the page, each one following the next
with no overlap between them - a procedure known as relative positioning. The distance between the blocks can be controlled to a
degree using the “padding” and “margin” attributes discussed above - for most layout requirements, just these attributes are enough.

For more control, the “position”, “left” and “top” attributes can be set to change the way boxes are laid out. By default, the position is
“relative”, which means the box is positioned normally and then offset by the “left” and “top” attributes - these default to zero. The
position of the following box is calculated as if the box was not offset. Here’s an example:

Box 1

Box 2

Box 3

Box 1

Box 2

Box 3

Normal flow Box 2 has left=“10” top=“-10”

Sometimes this isn’t flexible enough - for example, if you want to place a paragraph of text on top of an image, or at a specific position
on the page. In this case you can set the “position” attribute to “absolute”. This causes the box to be “taken out” of the normal flow and
positioned relative to it’s parent only - i.e. completely independent of it’s siblings.

Here’s the above example again, but with the second box positioned absolutely. Notice how the left and top offsets are now relative to
it’s parent, and how the third box is positioned as if the second didn’t exist.

Box 1

Box 2

Box 3

Box 1
Box 2

Box 3

Normal flow Box 2 has left=“10” top=“-10” position=“absolute”

There is one critical condition when using absolutely positioned elements; the element cannot be the child of the BODY element. This
is because unlike HTML, elements must be assigned to a page before they can be positioned, but as absolutely positioned items are
independent of their siblings, there’s no way to decide which page they go on. To position an item at an absolute position on a specific
page, it can be placed in a “background-macro” which is then assigned to the page.

Clipping and Visibility

In the above examples you will probably have noticed that the boxes overlap.In the case of the absolutely positioned example, it spills
outside the bounds of it’s parent. This can be controlled by setting the “overflow” attribute, which can be set to “visible” (the default)
or “hidden”. This determines whether an elements children are “clipped” at it’s edges or not.

Page 25 of 76

Here’s the second example above, but with the “overflow” attribute of the parent element set to “hidden”. The element is clipped at the
edge of the parents “content” box - because the parent has “padding” set to 4 this is 4 points inside the border.

Box 1

Box 2

Box 3

Box 1
Box 2

Box 3

Normal flow Box 2 has left=“10” top=“-10” position=“absolute” overflow=“hidden”

The “overflow” attribute can be used to interesting effect with the CIRCLE, ELLIPSE and SHAPE elements.

There are two other attributes which will be familiar to HTML JavaScript programmers, but which aren’t as useful in PDF owing to
the static nature of a PDF page - although we do support them. The visibility and display attributes affect whether an element
on the page is displayed or not. The value of “visibility” defaults to “visible”, but can be set to “hidden” to prevent display of an
element and it’s children, leaving the space it would have taken on the page empty. Alternatively, to remove an element altogether, set
the “display” attribute to “none”, which will prevent the element both from being displayed and from having space allocated for it on
the page.

Text and Fonts

Text Elements

The text handling in the report generator revolves around the idea of a paragraph - a rectangular block of text. Every line of text in the
document is inside a paragraph - either an explicit one caused by the P, PRE, BLOCKQUOTE or H1 to H4 elements, or an
“anonymous” paragraph (more on these below).

Inside a paragraph of text, the current font style may be changed by using inline elements, like B, I, A and SPAN. Inline elements may
only be used inside a paragraph, but other than that are treated as normal blocks and may have a border, padding, background color or
image as usual. Here’s a simple example.

 <body>
 <p>This is a paragraph, this is in bold and this is back to normal</p>
 </body>

Here’s a table summarizing the various text elements and what they’re intended for. More complete information is available in the
Element reference.

Element Type Purpose

P paragraph A general purpose text container

PRE paragraph A type of paragraph that preserves whitespace and newlines

H1 - H4 paragraph Used for headings

BLOCKQUOTE paragraph Used for quotes - indented in from the margins to the left and right

SPAN inline A general purpose inline element

B inline Set the font weight to bold

Page 26 of 76

Element Type Purpose

I inline Set the font style to italic

U inline Set the text decoration to underlined

O inline Set the font style to outlined

A inline Set the text decoration to underlined

SUP inline Set the text to superscript

SUB inline Set the text to subscript

BIG inline Set the text to use a font size 1¼ times normal size

SMALL inline Set the text to use a font size ¾ times normal size

STRIKE inline Set the text decoration to strike-out

TT inline Set the text to use a “typewriter” font, e.g. Courier

ZAPF inline Set the text to use the Zapf-Dingbats font

SYMBOL inline Set the text to use the Symbol font

NOBR inline Set the text to turn off automatic linewrapping

CODE inline Set the text to use a “typewriter” font, turn of line wrapping etc.

EM inline Identical to I

STRONG inline Identical to B

Anonymous Paragraphs

Under certain circumstances, the report generator will create “anonymous” paragraphs - basically it inserts a P element for you into the
document where required. It will do this automatically if it finds text or inline elements directly inside a BODY, LI or TD element.
Taking the example above, this could have been written as follows:

 <body>
 This is a paragraph, this is in bold and this is back to normal
 </body>

The Report Generator will automatically add the surrounding <P> and </P>, so internally this is converted to

 <body>
 <p>This is a paragraph, this is in bold and this is back to normal</p>
 </body>

If the parser is having trouble parsing a document, a good first step is to replace all the anonymous paragraphs with actual paragraphs,
so you can see more clearly where the problem lies.

Page 27 of 76

Making block elements inline

Since version 1.1 it’s also possible to display block elements like images, tables and so on inside a paragraph. This can be done by
setting the display attribute to “inline”, rather than the default value of “block” (this is a break with the CSS2 standard, where all
elements default to inline - we hope to fix this in a future release). Here’s an example.

 <p>
 This paragraph has an

 image in the middle.
 </p>

and here’s the result

This paragraph has an image in the middle

Vertical Alignment

When mixing elements of differing heights in a paragraph, like the example above, there are several options available for vertical
positioning. First, there are two definitions we need to make. The Inline Box is a box equivalent to the size of the inline item itself -
usually a word or phrase, but as we saw above it’s sometimes an image or similar. The above example contains three inline boxes, one
for the text before the image, one for the image and one for the text after it. Each inline box is the same size or smaller than the Line
Box, which is simply the box representing the physical line, and is always just big enough to fit it’s inline boxes.

In the example below, the line box is in yellow, the larger text-box is in green and the smaller of the two text-boxes is shown in orange.

Large Top Large Middle Large Baseline Large Bottom

This example shows the four different options for vertical alignment within a line box, which is set with the vertical-align or
valign attribute. “Top” places the top of the inline box at the top of the line box, “middle” places the middle of the inline box at the
middle of the line box. “baseline”, the default, places the baseline of the inline box at the baseline of the line box. Finally, “bottom”
places the bottom of the text box at the bottom of the line box. There are two other values which can be used - “super” and “sub” -
which place the text in the super or subscript position. These are not demonstrated here.

The height of each inline box depends on both the size of the font used, and it’s leading, or white space between lines. This is set with
the line-height attribute. Each font has a preferred leading set by the font author, which is equivalent to setting line-height
to “normal” - usually equivalent to between 100% and 120% of the font size. The line-height can also be set to a percentage, in
which case it’s a percentage of the current font-size.

line-height=normal line-height=100% line-height=200%

As you can see, any leading that is applied is split evenly above and below the text, as required by CSS2.

Page 28 of 76

Float positioning

You’ve seen how to add blocks in the middle of a paragraph using the display="inline attribute, but there’s one more common
type of placement - known as float positioning. This causes the inline box to “float” to the left or right of the paragraph, and allows text
to wrap around it.

“The following text will be drawn around the
box to the right. When it grows beyond that
box, it will automatically fill the full width of the line.”

 <p requote="true" text-align="justify" border="1" font-size="22pt" padding="4">
 <div float="right" width="120" height="50" background-color="blue"/>
 "The following text will be drawn around the box to the right. When it
 grows beyond that box, it will automatically fill the full width of the line."
 </p>

Any inline elements can be floated to the left or right (setting the float attribute causes display to be automatically set to
“inline”), and floating blocks can be started anywhere in a paragraph, not just at the start. Usually the floating block will start at the
current line, but this depends on the value of the clear attribute. This attribute can be set to “none”, “left”, “right” or “both”, to cause
a floating block to be displayed only when the left margin is clear of any other floating blocks, the right margin is clear, or both are
clear. The default is “none”, which effectively says “it doesn’t matter if there is another floating box to the left or right - put me on the
first line you can”. Here’s an example showing the various different settings in combination.

Text text
text
text
text

text text text text text text text More more more more more more
more more more more more more more more more more more more

more more more more more more more more more more more more more more
more more more more more more more more more more more more more more more more more
more more more more more more more more more more more more more more more more more
more more more more more more more more more more more more more more more more more

more more more more more more more more more more more more more more

 <p border="1" font-size="12pt" padding="4">
 <div float="right" clear="right" width="40" height="40" background-color="yellow"/>
 <div float="right" clear="right" width="40" height="40" background-color="orange"/>
 <div float="right" clear="none" width="40" height="40" background-color="lightgreen"/>
 Text text text text...
 <div float="left" clear="none" width="40" height="40" background-color="pink"/>
 <div float="left" clear="none" width="40" height="40" background-color="lightblue"/>
 <div float="left" clear="none" width="40" height="40" background-color="khaki"/>
 <div float="left" clear="left" width="40" height="40" background-color="salmon"/>
 More more more more...
 </p>

Page 29 of 76

Text Attributes

There a several attributes that can be set to control how text is displayed in the document. Most of the “inline” elements defined above
set one of these attributes to alter the style of text - for example, the element is identical to .
Almost all of these are taken from CSS2, and are in many cases identical to the values used in HTML. Full details for each attribute
are defined in the Attribute reference section.

Attribute name Values Description

font-family name of a font Set the font face, e.g. “Times”, “Helvetica”, “monospace” or a user
defined font. The CSS2 generic fonts “serif”, “sans-serif” and
“monospace” are also recognised, and mapped to Times, Helvetica
and Courier by default. Since version 1.0.14, it’s possible to specify
more than one font-family, seperated by spaces or commas. This is
commonly done in HTML to say “use the first font in this list that’s
available”, but the actual meaning is “display each characters using
the first font in the list that contains it”. This is particularly useful
w i t h P D F f o n t s - f o r e x a m p l e , s e t t i n g
font-family="Times, Symbol" would mean that text will
be displayed in the Times Roman font if the character is available,
otherwise the Symbol font will be used. This makes it easy to mix
text from different fonts, eg. abcαβγ.

font-style normal / italic / outline Set the style of the font face - italic, outline or a combination, e.g
“italic outline”.

font-weight normal or bold Set the weight of the font. Only two weights are recognized, normal
and bold

font-size size of the font Set the size of the font. Can be “absolute”, (e.g. “12pt”) or
“relative”, (e.g. “1.5em”, where 1em is the current size of the font).
Other valid values, as defined in CSS2, are “larger” and “smaller”,
as well as “xx-small”, “x-small”, “small”, “medium”, “large”, “x-
large” and “xx-large”. “medium” is equivalent to 11pt.

font-variant normal / small-caps Set the font-variant - either normal (the default) or small-caps.
The small-caps font is synthesized, so no explicit small-caps font is
required. THIS TRANSFORMATION IS QUITE TIME CONSUMING, SO
AVOID USING IT FOR LONG PHRASES.

font-stretch normal / ultra-condensed /
e x t r a - c o n d e n s e d /
c o n d e n s e d / s e m i -
condensed / semi-expanded /
expanded / extra-expanded /
ultra-expanded

Set the horizontal stretching of the font. Note this attribute is not
typographically correct, in that it simply stretches the text rather
than choosing a variant of the typeface. This will result in wider or
narrower vertical stems.

line-height number Set the spacing between successive lines of text - either “normal” to
choose the spacing the font-designer recommended, a percentage
(100% for line-height=font-size), or explicitly, eg “14pt”

font font description This shorthand property allows you to set the font family, size,
style, weight, variant and line spacing with one attribute, eg.
"bold 12/14pt Times". See the CSS2 specification for a full
description of this attribute.

color color Set the color of the font

outline-color color Set the color of the outline of the font, if it’s drawn

Page 30 of 76

Attribute name Values Description

outline-width number Set the width of the outline of the font, if it’s drawn

text-indent number Set the indentation of the first line of text in a paragraph. A positive
number indents the first line to the right, a negative number to the
left.

text-decoration underline or line-through Set the text decoration - underlined or struck out

text-transform normal / capital ize /
uppercase / lowercase

Set the text transformation - “capitalize” capitalizes the first letter
of each word, and “uppercase” and “lowercase” transform the
whole phrase accordingly.

text-align left / right / center / justify Set the alignment of the text within it’s paragraph box. This is a
standard CSS2 attribute, unlike it’s HTML counterpart align.
However, in an effort to preserve HTML compatibility, both
parameters are accepted - if text-align isn’t set, the value of
align is used instead.

letter-spacing number Set the space between letters. A positive number moves letters
further apart while a negative number moves them together. The
default is zero

justification-ratio number from 0 to 1 When text is justified, extra space is placed between letters and
words to increase the overall length of the line. This parameter
controls how much space is added between letters, and how much
between words. A value of 0 means “only extend the spacing
between words”, while a value of 1 means “only extend the spacing
between letters. The default is 0.5, which means add a bit to each.
Note this setting has no effect if text is not justified - in that case,
see the letter-spacing attribute.

requote true or false Whether to use “curly” quotes or "plain" quotes.

suppress-ligatures true or false Whether to automatically use the “fi”, “fl” and “ffi” ligatures

Fonts

Built-in fonts

Every report created by the Report Generator can display the standard 5 fonts available in all PDF documents - Times, Helvetica and
Courier, as well as the “Symbol” and “ZapfDingbats” fonts. Times, Helvetica and Courier can also be referred to by the generic
CSS2 names of “serif”, “sans-serif” and “monospace”. The following two lines give identical results:

 <body>
 <p>This is in Helvetica</p>
 <p>This is in Helvetica</p>
 </body>

As well as the standard 5 fonts, users with the appropriate language version of Acrobat can access up to 7 further fonts to display
Chinese, Japanese and Korean text. The names for these fonts are “stsong” (STSong-Light, simplified Chinese), “msung” (MSung-
Light, traditional Chinese), “mhei” (MHei-Medium, traditional Chinese), “heiseimin” (HeiseiMin-W3, Japanese), “heiseikakugo”
(HeiseiKakuGo-W5, Japanese), “hygothic” (HYGoThic-Medium, Korean) and “hysmyeongjo” (HYSMyeongJo-Medium, Korean).

Page 31 of 76

Thanks to the native Unicode support of Java, XML and the Report Generator, creating reports with non-latin characters is easy. We’ll
cover more on this later, but here’s a quick example of how to use a JSP to create a document showing the current date in Japanese

 <?xml version="1.0"?>
 <%@ page language="java" import="java.text.*" contentType="text/xml; charset=UTF-8"%>
 <!DOCTYPE pdf PUBLIC "-//big.faceless.org//report" "report-1.1.dtd">

 <% DateFormat f = DateFormat.getDateInstance(DateFormat.FULL, Locale.JAPANESE)); %>

 <pdf>
 <body font-family="HeiseiMin" font-size="18">
 Today is <%= f.format(new java.util.Date()) %>
 </body>
 </pdf>

OpenType and WOFF fonts

One of the strengths of PDF documents is their ability to embed fonts into the document - both OpenType™ (also known as
TrueType™) and Type 1 fonts can easily be embedded.

When embedding fonts, it’s important to remember a key point about the PDF specification. Each font variation (there are four -
normal, italic, bold and bold-italic) is treated as a completely separate font. For the built in fonts, this isn’t important, but when
embedding a font authors need to remember that if even one letter is to be displayed in italic, two fonts will need to be embedded
instead of one - the normal version and the italic.

OpenType fonts can be embedded using one or two bytes per glyph. Two bytes are recommended for any fonts that will be used to
display glyphs outside the 8859-1 character set - Japanese, Chinese, Russian, Czech, Arabic and so on. The “bytes” attribute on the
LINK element sets how many bytes are used - if not specified, it defaults to 1.

So how do you embed a font? Let’s take as an example the Times Roman font, supplied with Microsoft Windows. It’s an OpenType
font, and there are four files that make up the font, one for each variation as described above.

 <pdf>
 <head>
 <link name="mytimes" type="font" subtype="opentype" src="times.ttf" bytes="1"/>
 </head>
 <body font-family="mytimes" font-size="18">
 Hello in an embedded OpenType font
 </body>
 </pdf>

This shows the basic setup embedding a single font variation (the value “truetype” can also be used as a synonum for “opentype”).
Notice that when we link in the font we set the “name” attribute, which we then reference later in the document. But what do we do if
we want it in italic as well?

 <pdf>
 <head>
 <link name="mytimes" type="font" subtype="opentype"
 src="times.ttf" src-italic="timesi.ttf"/>
 </head>
 <body font-family="mytimes" font-size="18">
 Hello in an embedded, <i>italic</i> OpenType font
 </body>
 </pdf>

Page 32 of 76

By setting the “src”, “src-italic”, “src-bold” and “src-bolditalic” attributes in the LINK element we can have access to the entire range
of styles in the font. If a variation isn’t used, it isn’t embedded in the document, so it doesn’t hurt to link in all the variations - the size
of the document won’t be increased.

Two additional aspects of OpenType fonts can be set, both of which default to true. Whether the font is embedded in the document or
just referenced by name is controlled by the “embed” attribute, and whether the font is subset or not is controlled by the “subset”
attribute. Generally it’s best to leave these untouched.

OpenType Collections and WOFF fonts

WOFF fonts are a variation of the standard OpenType format, and since 1.1.63 we can load them in the same way as an OpenType. No
change to the XML is required, although you can use “woff” as a subtype if you prefer - it is a synonym for “opentype”. The WOFF
2.0 format is not yet supported - we support WOFF 1.0 only.

We also support loading a particular font from an OpenType Collection. A collection is a number of fonts bundled into one file - as
many of the datastructures are shared, this can sometimes save significant space overall and we see it most with fonts for the East
Asian languages such as Chinese and Japanese.

To reference a particular font in an OpenType collection, add a fragment identifier of the form ‘#font=n’ to the font identifying which
item in the collection you want, with the first font at index 1. For example, to load the second font in the collection:

 <pdf>
 <head>
 <link name="mingliu" type="font" subtype="opentype" src="mingliu.ttf#font=2"/>
 </head>
 <body font-family="mytimes" font-size="18">MingLiU Proportional</body>
 </pdf>

Type 1 fonts

Similar to OpenType fonts above, Type 1 fonts can be used too. These usually come as two separate files - an “AFM” file, describing
the size of the characters, and a “PFA” or “PFB” file describing the actual characters themselves.

The AFM file must always be available, as otherwise the Report Generator won’t know the size of the characters or which characters
are available in the font. The PFB file should always be included, but isn’t mandatory. Leaving it has the same effect as turning off
embedding for OpenType fonts - if the font isn’t installed on the viewers computer, it will be approximated.

Here’s an example of how to embed a Type 1 font in the document.

 <pdf>
 <head>
 <link name="BitstreamCharter" type="font" subtype="type1"
 src="charter.afm" pfbsrc="charter.pfb"/>
 </head>
 <body font-family="BitstreamCharter" font-size="18">
 Hello in an embedded Type 1 font
 </body>
 </pdf>

Like OpenTypes, the italic, bold and bold-italic variants must be included separately, using the “src-italic”, “src-bold” and “src-
bolditalic” for the AFM files, and “pfbsrc-italic”, “pfbsrc-bold” and “pfbsrc-bolditalic” for the PFB or PFA files.

Page 33 of 76

Tables

The table syntax is almost identical to HTML with a few added features. Each table is a block (as described in the “box model” section
above), with one or more rows (the TR element) containing several columns (the TH and TD elements).

Cells can span several columns or rows by setting the “colspan” and “rowspan” attributes. As each row and cell are also blocks, their
margin, padding, border and backgrounds can be set separately (in CSS2 a row cannot have padding, margin or border set. We allow
this, but only the vertical components - e.g. setting <tr border="1"> only sets the top and bottom borders to 1. This is necessary
to lay the table out correctly). Here’s an example:

 <table width="100%" border="2">
 <tr>
 <td colspan="2" align="center">Countries and their foods</td>
 </tr>
 <tr background-color="#D0D0D0">
 <th>Country</th>
 <th>Food</th>
 </tr>
 <tr>
 <td>Wales</td>
 <td>Leek</td>
 </tr>
 <tr>
 <td>Argentina</td>
 <td>Steak</td>
 </tr>
 <tr>
 <td>Denmark</td>
 <td>Herring</td>
 </tr>
 </table>

And here’s what it looks like.

Countries and their foods

Country Food

Wales Leek

Argentina Steak

Denmark Herring

When migrating from HTML tables, you need to remember that the border directive sets the border for the entire table, rather than
the border around each of it’s cells. To draw a border around every cell, you can either set the border attribute for each of them or set
the cellborder option for the table. Likewise, the HTML attribute “cellspacing”, which set the margin for each cell, has been
renamed to “cellmargin”.

Pagination with tables - headers and footers

When a table is too long to fit on a page, it may be broken into smaller tables that do fit (this can be prevented by setting the “page-
break-inside” attribute - see Pagination for more detail). A common requirement when this happens is to reprint a standard header or
footer row in the table.

Page 34 of 76

This can be done using the THEAD, TBODY and TFOOT elements - also part of HTML, although not commonly used. These
elements allow rows in the table to be assigned to the header, the body or the footer of the table. If the table is all on one page, this
distinction isn’t important, but if it’s split over several pages this allows the Report Generator to reprint the headers and footers on each
sub-table as required. Here’s an example.

 <table>
 <thead>
 <tr><td>Animal name</td><td>Habitat</td></tr>
 </thead>
 <tbody>
 <tr><td>Aardvark</td><td>Africa</td></tr>
 <tr><td>Ant</td><td>My Kitchen</td></tr>
 <tr><td>Anteater</td><td>South America</td></tr>
 <tr><td>Antelope</td><td>Africa</td></tr>
 <tr><td>Armadillo</td><td>South America</td></tr>
 </tbody>
 </table>

If a row is added to a table directly (without being placed inside a THEAD, TBODY or TFOOT element), it’s assumed to be inside the
TBODY. The TH element, meant to represent a table header, is purely stylistic and is treated no differently to the TD element in terms
of layout.

Table Layout algorithms

A table is laid-out according to one of two algorithms - which one is controlled by the setting of the “table-layout” attribute. The
default is “auto”, which means the table is laid out according to the “automatic” layout algorithm recommended in the CSS2
specification. This is the same as that used by most web browsers, where each cell is sized based both on it’s content, any width or
height that is specified and the size of the other cells in it’s row and column.

The other option is “fixed”, where the table is laid out according to the “fixed” layout algorithm from the CSS2 specification. This
algorithm is slightly faster, as it sizes each cell based only on the “width” attributes, not on the cell contents. The TABLE element
must have an explicit “width” attribute set, otherwise the layout algorithm defaults to auto.

There are some other subtle differences between HTML, CSS and the table model we use here. See the “table” entry in the Element
and Attribute Reference section for more detail.

Lists

The Report Generator supports two types of list - “ordered” (specified by the OL element) and “unordered” (specified by the UL
element). Each list contains one or more “list elements”, specified by the LI element. The elements are printed on the page one after
the other, often indented slightly and with a “marker” next to it. The marker is the only real difference between the two types of list.
Here are a couple of examples demonstrating this - the only difference are the UL and OL elements:

 Item 1

 Item 2.1
 Item 2.2

 Item 3

• Item 1

• Item 2.1

• Item 2.2

• Item 3

Page 35 of 76

 Item 1

 Item 2.1
 Item 2.2

 Item 3

1. Item 1

1. Item 2.1

2. Item 2.2

3. Item 3

In the ordered list, the “marker” are the arabic numerals starting at 1. In the unordered list, they’re the small bullets, or “discs”. These
can be changed by setting the “marker-type” attribute of the list itself. Valid values can be either a literal or one of the following
values.

Marker name Description

disc A round bullet (character U+2022). Unordered

middle-dot A small round bullet (character U+00B7). Unordered

decimal The arabic numerals starting at “1”

lower-roman Lowercase roman numerals starting at “i”

upper-roman Uppercase roman numerals starting at “I”

lower-alpha Lowercase latin letters starting at “a”

upper-alpha Uppercase latin letters starting at “A”

circled-number Circled numbers from 1 to 20 (character U+2460 to U+2473)

If the marker-type is not one of these values, it’s printed literally. This can be used with good effect with a “dingbats” font. The font
for the marker can be set using the “marker-font-family”, “marker-font-style” and “marker-font-weight” attributes, which do the same
job for markers as “font-family”, “font-style” and “font-weight” do for normal text.

Also of note are the “marker-prefix” and “marker-suffix” attributes, which can be used to display a literal immediately before or after
the marker. Here are some examples:

(1) Item 1

(2) Item 2

(3) Item 3

marker-type="decimal"
marker-prefix="("
marker-suffix=")"

a. Item 1

b. Item 2

c. Item 3

marker-type="lower-alpha"

i. Item 1

ii. Item 2

iii. Item 3

marker-type="lower-roman"

✗ Item 1

✗ Item 2

✗ Item 3

marker-type="✗"
marker-font-family="ZapfDingbats"

① Item 1

② Item 2

③ Item 3

marker-type="circled-number" marker-suffix=""
marker-font-family="ZapfDingbats"

Page 36 of 76

A useful feature which is missing in HTML is the ability to create hierarchical lists. This is most easily demonstrated.

 <ol marker-type="upper-alpha" marker-hierarchy="true">
 Item 1

 <ol marker-type="lower-roman">
 Item 2.1
 Item 2.2

 Item 3

A. Item 1

B.i. Item 2.1

B.ii. Item 2.2

C. Item 3

As you can see, the “marker-hierarchy” attribute allows nested lists to refer to the value of the parent list. The value specified by the
“marker-hierarchy-separator” attribute is the literal (if any) to place between the nested elements, performing a similar job to “marker-
prefix” and “marker-suffix”. It defaults to “.”.

The final setting relating to lists is the “marker-offset”. This is the distance away from the left edge of the list element to place the
marker. Generally this is the same as the list elements “padding-left” attribute (which defines how far in the list element is nested), but
it can be made smaller to indent the marker as well.

Images

The Report Generator can embed several different bitmap image formats - PNG, JPEG, GIF, PBM, PGM and TIFF. There are some
restrictions however:

• Progressive JPEG images can only be read in Acrobat 4.x and greater, and as they’re larger as well they should be avoided and
standard baseline JPEG’s used.

• Animated GIF images can be used, but only the first frame will be shown. GIF images may use any number of colors.

• Old-style JPEG, NeXT and Thunderscan TIFF image sub-formats are not supported, but these variations have been been seen in
decades now.

• Transparency, including alpha transparency, is fully supported in the GIF and PNG image formats.

• Only the first image of multi-image PGM and PBM images will be used. ASCII encoded PNMs cannot be parsed.

The size of the image depends on the size in pixels of the bitmap, and the dots-
per-inch (or DPI) it’s rendered at. As PDF is a print-based medium, there is no
fixed “pixel size” which determines the size of the image. A 200 x 200 pixel
bitmap at 200dpi will only take up one square inch - at 600dpi it takes a third of
an inch.

The image DPI can be set by the “dpi” attribute, and defaults to the DPI set in
the image. GIF, most PNG and the occasional TIFF image don’t specify a
default DPI, in which case it defaults to 72 - which conveniently means that a
200 x 200 pixel bitmap takes 200 x 200 points on the page. Depending on the
type of image this may not be high enough - it’s probably OK for photographs
but hi-resolution line-art generally requires 200 to 300dpi to avoid appearing
blocky when printed.

As well as using the “dpi” attribute, the width and height of an image can be set
directly in the same way as for any other block - using the “width” and “height”
attributes. The document author is responsible for making sure there is no
change in aspect ratio.

Page 37 of 76

The TIFF image format allows multiple pages as part of a single image. To select a specific page of a TIFF image, simply add a “#n”
to the image URL. For example, to load the second page of a multi-page TIFF image, add the following XML to your document:

URLs for the the image may be absolute or relative, in which case they’re relative to the base URL of the source file. Technically this
is the System-ID of the InputSource the XML is being parsed from: this is generally the URL the XML is loaded from, although
this is under the control of the software

The “alt” attribute can be set on an image, as in HTML, although this is typically not necessary. The only time it is required is if a
PDF/UA document is being created.

Barcodes

The Report Generator can print barcodes directly to the document using one of several barcode algorithms. This is generally more
convenient than including bitmap representations of the barcode, and always results in smaller files. The size of the barcode depends
on the value to be printed and the “bar-width” attribute (the width of the narrowest bar - may be set to values between 0.6 and 1). This
means the the “width” element is ignored, and the height may be set within the limits imposed by the barcode algorithm - the
minimum height is 15% of the width or 18 points, whichever is greater.

<barcode codetype="code128" showtext="true" value="My Value"/>

The value of the barcode is set by the mandatory “value” attributes, and the “showtext” attribute (which may be true or false)
determines whether a human readable version of the value is printed below the code. The actual bar code algorithm used is set by the
mandatory “codetype” attribute, and may be one of the following values. If a value contains characters outside the range that can be
displayed by the selected code type, an error occurs.

Code name Description

code128

Code 128

Code 128, a modern variable-width code. Can display
ASCII values from 0x00 to 0xFF. Code128 has several
variations, the package chooses the most compact one
based on the data.

code39

CODE 39

Code 3 of 9. An older code, widely used but not
terribly compact. Can display the symbols A to Z
and digits, space - + $. % / *. May use the “bar-
ratio” attribute.

code39checksum

CODE 39

Code 3 of 9 with checkdigit. Identical to code39
but with a checkdigit added.

code25

0123456789

Interleaved Code 2 of 5. Can display digits only, but is fairly
compact. May use the “bar-ratio” attribute.

code25checksum /
code25deutschenpost

0123456789

Interleaved Code 2 of 5 with checkdigit. Identical to
code25 but with a checkdigi t added. The
“code25deutschenpost” value can be used to select the
checksum algorithm used by Deutschen Post in Germany for the Leitcode and Identcode
symbols.

Page 38 of 76

Code name Description

codabar

A12345B

CodaBar algorithm. Variable-width code used by Fed-Ex amongst
others, the first and last symbols must be a stop code from A to D, and
the symbols in the middle must be a digit or one of + - $ / : or the
decimal point “.”

ean13 / upca

9 780596 001971

EAN-13 - the international variable-width barcode used on groceries
and books, always 13 digits long. The last digit is a checkdigit, which
may or may not be specified. Generally EAN-13 codes should have
their bar-width attribute set to 0.75, which makes the whole code one
inch wide. The codetype “upca” may also be used to generate US-
format UPC-A barcodes. These are identical except that the value must
be 10 or 11 digits long.

ean8

5512 3457

EAN-8 is an 8-digit barcode which is very similar to EAN-13 in design and
purpose. It’s typically used where an EAN-13 barcode would be too large.

postnet PostNet algorithm, used by the US Postal Service to encode
ZIP codes, so it only represents digits. The height and width of this code are fixed according
to the specification, so the “width” and “height” attributes are ignored.

rm4scc Royal Mail 4-state Customer Code. A 4-state code used by the
Royal Mail in the UK to encode postcodes. Like PostNet, the
width and height of this code are fixed. This algorithm can
encode digits and the upper-case letters A-Z.

intelligentmail The IntelligentMail® barcode,
introduced in 2008 by the USPS to
replace Postnet. It takes a 20, 25, 29 or 31 digit value and has a fixed width and height.

maxicode MaxiCode symbol. MaxiCode is a 2-D barcode invented by UPS but
now in the public domain. These codes are different to the other barcode
types in that they are always 80x80 points (the “width” and “height”
attributes should be set to 80), and “showtext” is ignored. A MaxiCode
symbol can encode up to 183 ISO-8859-1 characters of general text
(extended error correction is used if space permits it), or for addressing
a “Structured Carrier Message” can be specified. For an SCM the value
must begin with “])>”, and the format must be as specified in section B.2 of the MaxiCode
specification.

pdf417 PDF417 is a “stacked” 2D barcode - probably the most common one.
It’s used for a wide variety of purposes (for instance, paper archives of
electronic invoices in Spain must use PDF417). The “width” and
“height” attributes must be set but other attributes will be ignored. To target the earlier
(partly incompatible) version of the spec, use a type of “pdf417:2001”, and to use ECI
markers to identify the encoding explicitly (which is not supported by all readers), use
“pdf417:eci”

qrcode QR-Code is a 2D barcode, invented and commonly used in Japan but making
headway elsewhere too, due to it’s ability to store Kanji and it’s incredible
density - the largest version can store over 6000 digits. The “width” and/or
“height” attributes must be set but other attributes will be ignored.

datamatrix Data Matrix is another commonly used 2D barcode. By default a square
datamatrix will be used, but if the width is a multiple of the height a rectangular
code will be produced.

Page 39 of 76

Code name Description

databar GS1 Databar (formerly known as RSS-14) is a very compact, fixed
size barcode that can represent 14 digits. Uniquely it requires no
quiet zone, so you may want to consider adding margin or padding
to barcodes using this symbol.

aztec Aztec Code is a modern, compact 2D barcode that is visually quite similar to
QR Code.

deutchepostmatrix Deutsche Post have their own “post matrix” code, which is a variation on
DataMatrix. The code has a fixed size and the “width” attribute should be left
unspecified.

Two of the codes listed above - Code 3/9 and Interleaved 2/5 - are not “variable width” codes, and use just two bars - a thick bar and a
thin bar. These algorithms may optionally use the “bar-ratio” attribute to specify the ratio between the width of thick and thin bars.
Some knowledge of the algorithms limits are recommended if altering this value, which defaults to 2.8. If this attribute is specified for
a variable-width barcode, it’s ignored.

Generic Blocks and Vector Graphics

Sometimes the need arises to group elements together inside a block - for example, to set the language or class for a number of
elements, or to position several absolutely-positioned elements relative to the same point. There are several generic elements in the
XML syntax, the most familiar one being DIV (short for division), which is also used in HTML.

The DIV element can contain other blocks as children - tables, paragraphs or other divs are common. A plain DIV by itself has no
appearance on the page (although one can obviously be given by setting the background color and border, as for any block).

Performing an identical function to DIV but with a slight twist are the CIRCLE, ELLIPSE and SHAPE
elements. As a block is just a rectangle on a page, these elements can be used to define the shape that’s
drawn within this rectangle.

These can be used for interesting effect, especially as like a DIV they can also contain other blocks as
children. For instance, a paragraph or image could be placed inside an ELLIPSE whose “overflow” attribute
was set to “hidden” to give a porthole-like view on the contents, like the example to the right.

Note that the children of these shapes are not shaped to fit, merely trimmed - for example, a paragraph of text will still be rectangular,
but this method allows only a portion of that rectangle to be seen.

These elements can also be used to draw diagrams, often by setting the “position” attribute to “absolute”. Here’s an example:

 <style>
 .pic div { position:absolute; width:75; height:75 }
 </style>

 <div class="pic" width="150" height="150">
 <div background-color="red"/>
 <div left="75" background-color="green"/>
 <div top="75" background-color="yellow"/>
 <div left="75" top="75" background-color="cyan"/>
 <ellipse width="150" height="150" border="2"/>
 </div>

Page 40 of 76

Ellipses

The ELLIPSE element takes the same attributes as a DIV - a “width” and “height” to specify the width and height of the ellipse.

Circles

The CIRCLE element is an alternative to the ELLIPSE. Instead of specifying the width and height, the mandatory “radius” attribute
must be set to the radius of the circle. Unlike the ellipse, the “left” and “top” attributes specify the location for the center of the circle,
not the top-left corner of the rectangle containing it. This can be confusing when the circle is relatively positioned, as it will appear to
be misplaced - in this case the “left” and “top” attributes need to be set to the same value as the “radius”, or the ELLIPSE element
used instead.

Shapes

The SHAPE element allows a custom shape to be defined by a drawing lines, arcs and bezier curves. This shape may then be painted
and/or may contain other blocks, which will be painted inside the shape - usually with the shapes “overflow” attribute set to “hidden”
to clip it’s children to the bounds of the shape.

Each SHAPE element must contain a SHAPEPATH which defines the shape, and then may optionally contain other blocks like the
DIV element. The SHAPEPATH defines the outline to draw, and may contain the following elements.

Element Example Description

moveto <moveto x="20" y="20"/> Moves the cursor to the specified location without marking the
page.

lineto <lineto x="20" y="20"/> Draws a straight line to the specified location

arcto <arcto width="100" height="100"
startangle="0" endengle="90"/>

Draws an arc from an ellipse. The size of the ellipse is
specified by the “width” and “height” attributes, and the
section to draw is specified by the “startangle” and
“endangle”. This example would draw an arc from the current
cursor position to a position 50 points to the right and 50
points down the page.

bezierto <bezierto x="100" y="100" cx1="50"
cy1="0" cx2="50" cy2="100"/>

Draws a bezier curve to the location specified by “x” and “y”.
cx1,cy1 is the location of the first control point and cx2,cy2 is
the location of the second.

This is difficult to visualize so here are some examples. The first shows how to draw a diamond.

 <shape width="100" height="100" border="1">
 <shapepath>
 <moveto x="50%" y="0%"/>
 <lineto x="100%" y="50%"/>
 <lineto x="50%" y="100%"/>
 <lineto x="0%" y="50%"/>
 <lineto x="50%" y="0%"/>
 </shapepath>
 </shape>

Page 41 of 76

If you then wanted to place some text inside this diamond, clipped to it’s edges, you could do this:

 <shape width="100" height="100" overflow="hidden">
 <shapepath>
 <moveto x="50%" y="0%"/>
 <lineto x="100%" y="50%"/>
 <lineto x="50%" y="100%"/>
 <lineto x="0%" y="50%"/>
 <lineto x="50%" y="0%"/>
 </shapepath>
 <p>
 This text will be clipped at the edge of the diamond.
 </p>
 </shape>

This text will be clipped
at the edges of the
diamond

Graphs

The ability to plot inline graphs is a key feature of the Report Generator. The usual method of including graphical information
(creating the graph as a bitmap using a separate package then including it as an image) has the disadvantages of increasing the size of
the document and giving poor results, especially when compared to a vector based language like PDF.

With the Big Faceless Report Generator, graphs can be created using the same methods you would normally use to create a dynamic
table (for example) - with a JSP or similar. The graphs are built using our Graph Library, which uses a 3D engine to create fully
shaded, realistic graphs.

So how do you create a graph? Here’s a simple Pie Graph to get you started.

 <piegraph width="200" height="150"
 yrotation="30" display-key="flat-outer">
 <gdata name="Monday" value="19"/>
 <gdata name="Tuesday" value="14"/>
 <gdata name="Wednesday" value="12"/>
 <gdata name="Thursday" value="17"/>
 <gdata name="Friday" value="13"/>
 <gdata name="Saturday" value="8"/>
 <gdata name="Sunday" value="3"/>
 </piegraph>

Sunday
Saturday

Monday

Friday

Tuesday

Thursday

Wednesday

The library supports two broad categories of graph - those plotting discrete data, including Pie Graphs and Bar Graphs, and continuous
data, ie; Line Graphs and Area Graphs. The discrete graphs all use the same pattern shown above, a graph element with one or more
GDATA elements describing a (name, value) pair, whereas the continuous graphs focus on “curves” - a mathematical function created
either from sampled values (stock prices over the year, for example) or pure functions (like a sine curve). These use either a
DATACURVE or a SIMPLECURVE. Here’s an example of both.

Page 42 of 76

 <linegraph width="200" height="150">
 <datacurve name="Measurements">
 <sample x="1" y="0.5"/>
 <sample x="2" y="0.9"/>
 <sample x="3" y="1.3"/>
 <sample x="4" y="1.2"/>
 <sample x="5" y="1.7"/>
 <sample x="6" y="2"/>
 <sample x="7" y="1.8"/>
 </datacurve>
 <simplecurve name="Predicted"
 method="java.lang.Math.log"/>
 </linegraph>

 Measurements
 Predicted

2
1.8
1.6
1.4
1.2

1
0.8
0.6

76.565.554.543.532.521.51

0.4
0.2

0

The DATACURVE is made up of two or more SAMPLE elements, which have an “x” and “y” attribute relating to the point on the
graph. The SIMPLECURVE takes the full name of a java method in it’s “method” attribute - this method must meet three criteria or an
exception will be thrown:

1. It must be static

2. It must take a single double as its parameters

3. It must a return a double as its result

General Graph attributes

There are a very large number of attributes that can be set to control how the graphs appear - more than those used by all the other
elements combined! These are detailed separately in the reference section, but we’ll go over some of them here too. The best way to
try them out is to experiment, and to have a look at the “graphs.xml” example, supplied in the example/samples directory.

First, every graph is a block element, which means it can have padding, borders, a background color and all the other attributes
appropriate for a block.

In addition, every graph can have the following attributes set (these are covered in more detail in the reference section).

Attribute value Description

default-colors list of colors The colors to use to display the graph, as a comma separated list. These are used
in the order specified, and when the list is exhausted the sequence starts again
from the beginning.

xrotation an angle in
degrees

The angle to rotate the graph around the X-axis. The X axis runs horizontally
through the graph, from left to right.

yrotation an angle in
degrees

The angle to rotate the graph around the Y-axis. The Y axis runs vertically down
the graph, from top to bottom.

zrotation an angle in
degrees

The angle to rotate the graph around the Y-axis. The Z axis goes “into” the
document

display-key none / right /
bottom / top /
left

Where to place the key relative to the graph. Pie Graphs have even moreoptions to
choose from. The default is “bottom”.

key-attributename font style The style to give the font used to display the key. The attributes have the same
names as those used for normal text (e.g color, font-family, font-size), but are
prefixed with “key-” to make “key-color”, “key-font-family”, “key-font-size”, and
so on.

keybox-color color The color to fill the box containing the key with. If the “display-key” value is not
“top”, “right”, “bottom” or “left”, this value is ignored.

Page 43 of 76

Attribute value Description

keybox-border-color color The border color to outline the box containing the key with. If the “display-key”
value is not “top”, “right”, “bottom” or “left”, this value is ignored.

light-level 0 to 100 The intensity of the light used to simulate the shading on the graph. A value of 0
gives no shading at all, a value of 100 gives deep shadows. The default is 70.

light-vector a vector, e.g.
“(1,0,0)”

The direction of the light used to determine the shadows on the graph. The vector
is specified as a vector of the form (X,Y,Z). The default is “(1,0,0)” which causes
the light to appear to come from the right side of the graph.

Pie Graphs
The PIEGRAPH element is the only type of graph that isn’t plotted using axes. Pie graphs have
a wider range of key types than the other graphs - as well as having the key placed in a box
around the graph, pie graphs can have inner keys, where the name of the value is written
directly on the slice, outer keys, where it’s written next to the relevant slice, or a combination.

The examples to the right are “rotated-inner-flat-outer” and “flat-outer” (in total there are 6
different options for “display-key” that are specific to Pie Graphs, so we won’t demonstrate
them all here). Below are the list of valid options for “display-key” that are specific to Pie
Graphs.

“display-key” value Description

flat-inner-flat-outer Put the label on the slice if it fits, or next to the
slice if it doesn’t.

flat-inner-rotated-outer Put the label on the slice if it fits, or rotate it
and put it next to the slice if it doesn’t.

rotated-inner-rotated-outer Put the label on the slice if it fits, or next to the
slice if it doesn’t. Rotate it to the same angle as
the slice regardless.

rotated-inner-flat-outer Put the label on the slice and rotate it to the
same angle if it fits: otherwise, put it next to the
graph and don’t rotate it.

flat-outer Put the label next to the slice

rotated-outer Put the label next to the slice and rotate it to the
same angle as the slice

inner

outer

When we say “if it fits” above, this is not to be taken literally (after rotation on three axes the math to determine this is well beyond
us). Instead, the “outer-key-percentage” attribute can be set to the minimum percentage of the pie a slice can be before it is considered
too narrow for an inner key.

Slices from the pie can be “extended” away from the center of the graph, like we’ve done above. This can be done by setting the
“extend” attribute on the GDATA element to the percentage of the radius of the pie to extend the slice. The examples here have the
purple slice set to “10”.

Another useful feature of Pie graphs is the “other” slice. The Report Generator can automatically group values below a certain size, to
prevent the graph becoming too cluttered. The “other-percentage” sets the threshold (it defaults to zero) and the “other-label” is the
label to use, which defaults to the word “other”.

A further problem wih Pie Graphs is what to do when the value to be plotted is zero. Of course, having a slice of Pie that’s 0% of the
whole doesn’t make sense in the real world, but occasionally it’s useful to be able to indicate that the value might have been present.

Page 44 of 76

To control this, the “display-zeros” attribute can be set to true or false - if true, the zero values will be displayed as infinitely small
slices. If false, they will be skipped completely (the default)

Axes Graphs

Every graph other than the Pie Graph is plotted against two or more axes - and consequently they all have several attributes in
common. First, we need to define some terms.

• A formatter determine how the values printed on an axis are displayed - as currencies, dates, integers and so on.

• A label is the name of the axis, like “day of week” or “number of units”. Labels on axes are optional, and off by default.

• A style is the name given to a group of attributes which together define how a text element in the graph appears. Like the “key”
attributes in the general graph attributes section, these always have a common prefix followed by the name of a text attribute - for
example “xaxis-font-family” and “xaxis-color” set the style of the values printed on the X axis, in the same way that “font-family”
and “color” set the style of normal text in the document. Valid suffixes are:

• color - the color of the text

• font-family - the font family of the text

• font-style - the font style of the text (“normal” or “italic”)

• font-weight - the font weight of the text (“normal” or “bold”)

• font-size - the font size of the text, in points

• align - the horizontal alignment of the text (“left”, “center” or “right”)

• valign - the vertical alignment of the text (“top”, “middle” or “bottom”)

• rotate - the angle to rotate the text, in degrees clockwise.

With these definitions out of the way, we can list several attributes which are common to all graphs plotted on an axis.

Attribute Value Description

xaxis style The “xaxis-” group of attributes set the style to display the values plotted on
the X axis - e.g. “xaxis-color” or “xaxis-font-family”. The default is black 7pt
Helvetica.

yaxis style The “yaxis-” group of attributes set the style to display the values plotted on
the Y axis - e.g. “yaxis-color” or “yaxis-font-family”. The default is black 7pt
Helvetica.

xaxis-formatter formatter The formatter to use to display the values on the X axis. See below for more
on formatters

yaxis-formatter formatter The formatter to use to display the values on the Y axis. See below for more
on formatters

xaxis-formatter-density n o r m a l
s p a r s e
minimal

The “density” of the X axis formatter. See below for more on formatters

yaxis-formatter-density n o r m a l
s p a r s e
minimal

The “density” of the Y axis formatter. See below for more on formatters

xaxis-label style The “xaxis-label-” group of attributes set the style to display the label given to
the X axis - e.g. “xaxis-label-color” or “xaxis-label-font-family”. The default
is black 10pt Helvetica.

yaxis-label style The “yaxis-label-” group of attributes set the style to display the label given to
the Y axis - e.g. “yaxis-label-color” or “yaxis-label-font-family”. The default
is black 10pt Helvetica.

Page 45 of 76

Attribute Value Description

floor-color color Set the color to draw the floor of the graph. The floor is the plane where y=0
or where y=min(y) - for most graphs this is where y=min(y) but for line graphs
this depends on the value of the “xaxis-at-zero” attribute. Defaults to “none”.

floor-border-color color Set the color to draw the grid on the floor of the graph. Defaults to “none”

floor-grid color Set which lines to draw on the grid on the floor of the graph. Valid values are
horizontal, vertical or a combination of the two, e.g.
horizontal+vertical (the default).

ywall-color color Set the color to draw the Y wall of the graph. The Y wall is the plane where
x=0 or where x=min(x) - for most graphs this is where x=min(x) but for line
graphs this depends on the value of the “yaxis-at-zero” attribute. Default to
“none”.

ywall-border-color color Set the color to draw the grid on the Y wall of the graph. Defaults to “none”

ywall-grid color Set which lines to draw on the grid on the Y wall of the graph. Valid values are
horizontal, vertical or a combination of the two, e.g.
horizontal+vertical (the default).

zwall-color color Set the color to draw the Z wall of the graph. The Z wall is the “back wall” of
the graph. Defaults to “none”.

zwall-border-color color Set the color to draw the grid on the Z wall of the graph. Defaults to “none”

zwall-grid color Set which lines to draw on the grid on the Z wall of the graph. Valid values are
horizontal, vertical or a combination of the two, e.g.
horizontal+vertical (the default).

axes-color color Set the color to draw the axes lines in. Default is black

box-color color Set the color to draw the (optional) box around the entire graph. The default is
“none”, so no box is drawn.

min-y number The minimum value to plot on the Y axis. Can be used to just display the top
of bar graphs or area graphs.

max-y number The maximum value to plot on the Y axis. Can be used to increase the space
above the top of the bars in a bar graph, for example.

Page 46 of 76

Formatting values on the axes

The X and Y axis values are displayed using a formatter. The default depends on the data being plotted, but is always either “integer()”
or “floatingpoint()”. The “xaxis-formatter” and “yaxis-formatter” can be set to one of the following values:

Formatter Description

none Don’t plot any values on this axis

integer() Plot the values on the axis as integers

percentage() Plot the values on the axis as percentages

floatingpoint() Plot the values on the axis as floating point values

floatingpoint(min,max) Plot the values on the axis as floating point values. The min and max values are the minimum
and maximum number of decimal places to display.

percentage(numdp) Plot the values on the axis as percentages. The number of decimal places is specified by the
numdp attribute.

currency() Plot the values as currency values. The currency format depends on the “country” part of the
locale of the graph, as set by the “lang” attribute.

currency(locale) Plot the values as currency values. The locale of the currency format is specified explicitly -
e.g. “en_GB” or “de_DE”.

simple(format) Plot the values using a java.text.DecimalFormat. The format attribute specifies the
format to use - e.g. “#0.0” to plot values that always have one decimal place.

date() Plot values on the axis as a date, using the format “dd MMM yyyy” (only used with Line and
Area graphs - see their entries for more information).

date(format) Plot values on the axis as a date, using the specified java.text.SimpleDateFormat
(only used with Line and Area graphs - see their entries for more information).

If these aren’t enough, a custom formatter can be written in java and referenced from the Report Generator by specifying it’s full class
name. For example, <bargraph xaxis-formatter="com.mycompany.CustomFormatter()">. All formatters are
subclasses of the org.faceless.graph.Formatter class, which is described more fully in the API documentation.

Additionally, the “density” of the formatter can be specified. This is an indication of how many values are to be plotted on the graph.
This is set using the “xaxis-formatter-density” and “yaxis-formatter-density” attributes - values can be “normal”, for between 8 and 14
values on the axis, “sparse” for between 4 and 7 values on the axis, and “minimal” for either 3 or 4 values on the axis, depending on
data. Here’s an example showing the differences on the Y-axis.

 Measurements

7654
xaxislabel
3210.4

2

1.8

1.6

1.4

1.2

N
or

m
al

 d
en

si
ty

1

0.8

0.6

 Measurements

7654321

2

1.5

S
pa

rs
e

de
ns

ity

1

0.5

 Measurements

76543210

2

1

M
in

im
al

 d
en

si
ty

Page 47 of 76

And here are some examples of the different types of formatters. The various date() formatters will be dealt with separately below,
as they are specific to line and area graphs.

 <linegraph width="200" height="150"
 yaxis-formatter="integer()"
 yaxis-label="Integers">
 <datacurve name="Measurements">
 <sample x="1" y="0.5"/>
 <sample x="2" y="0.9"/>
 <sample x="3" y="1.3"/>
 <sample x="4" y="1.2"/>
 <sample x="5" y="1.7"/>
 <sample x="6" y="2"/>
 <sample x="7" y="1.8"/>
 </datacurve>
 </linegraph> Measurements

2

1

In
te

ge
rs

76543210

 <linegraph width="200" height="150"
 yaxis-formatter="currency(en_GB)"
 yaxis-label="Pounds">
 <datacurve name="Measurements">
 <sample x="1" y="0.5"/>
 <sample x="2" y="0.9"/>
 <sample x="3" y="1.3"/>
 <sample x="4" y="1.2"/>
 <sample x="5" y="1.7"/>
 <sample x="6" y="2"/>
 <sample x="7" y="1.8"/>
 </datacurve>
 </linegraph> Measurements

£2.00

£1.80

£1.60

£1.40

£1.20

P
ou

nd
s

£1.00

£0.80

£0.60

7654321£0.40

Bar Graphs

The simplest and most familiar type of bar graph can be created using a BARGRAPH element, which creates a single row of simple
bars. Here’s an example:

 <bargraph width="200" height="150" xaxis-rotate="45">
 <gdata name="Monday" value="19"/>
 <gdata name="Tuesday" value="14"/>
 <gdata name="Wednesday" value="12"/>
 <gdata name="Thursday" value="17"/>
 <gdata name="Friday" value="13"/>
 <gdata name="Saturday" value="8"/>
 <gdata name="Sunday" value="3"/>
 </bargraph>

M
onday

Tuesday

W
ednesday

Thursday

Friday

Saturday

Sunday

0

2

4

6

8

10

12

14

16

18

20

If you compare this with the pie graph example shown above, you’ll notice that other than the name of the element and a couple of
attributes, the XML is almost identical. We’ve set the “xaxis-rotate” attribute to rotate the values on the X axis to 45 degrees - useful
for longer values.

Four attributes common to all variants of bar graphs are “bar-depth”, “bar-width”, “round-bars” and “display-barvalues”. The first two
set the size of the bar relative to the square that it sits on, and both default to 100%. The “round-bars” attribute can be set to true or
false, and if true turns each bar from a box into a cylinder - a nice effect, although it takes a little longer to draw. The “display-
barvalues” attribute allows the value of the bar to be plotted directly on or above the bar - values can be either “top” to display the

Page 48 of 76

value above the bar, “middle” to display it in the middle of the bar, “insidetop” to display the value at the end of but just inside the bar,
or “none” to not display it at all (the default).

Depth Bar Graphs

For more than one set of data, the simple BARGRAPH shown above can’t cope, and it’s necessary to turn to one of the other three
options. The first is a DEPTHBARGRAPH, which plots the different sets behind each other. To be effective, this graph really needs to
be shown in 3D. We’ve also set the “xaxis-align” attribute to “right”, which is effective with 3D rotation. Here’s an example: Notice
the “name2” attribute on the GDATA elements. This sets the name of the values on the second axes, and is used with
TOWERBARGRAPH and MULTIBARGRAPH graphs as well.

 <depthbargraph width="200" height="150"
 xaxis-align="right" xrotation="30" yrotation="30">
 <gdata name="January" name2="2001" value="19"/>
 <gdata name="April" name2="2001" value="14"/>
 <gdata name="July" name2="2001" value="12"/>
 <gdata name="October" name2="2001" value="17"/>
 <gdata name="January" name2="2000" value="22"/>
 <gdata name="April" name2="2000" value="18"/>
 <gdata name="July" name2="2000" value="17"/>
 <gdata name="October" name2="2000" value="17"/>
 </depthbargraph>

January
April

July
October

0
2
4
6
8

10
12
14
16
18
20
22

2000

2001

Multi Bar Graphs

When 3D isn’t an option the DEPTHBARGRAPH isn’t very effective, and a MULTIBARGRAPH is a better choice. This plots several
narrow columns next to each other on the one axis, but other than that is identical in function to the DEPTHBARGRAPH. We’ve set
the “zwall-border-color” so you can see more clearly where the divisions between values are.

 <multibargraph width="200" height="150"
 xaxis-rotate="45" zwall-border-color="black"
 bar-width="80%" display-barvalues="middle">
 <gdata name="January" name2="2001" value="19"/>
 <gdata name="April" name2="2001" value="14"/>
 <gdata name="July" name2="2001" value="12"/>
 <gdata name="October" name2="2001" value="17"/>
 <gdata name="January" name2="2000" value="22"/>
 <gdata name="April" name2="2000" value="18"/>
 <gdata name="July" name2="2000" value="17"/>
 <gdata name="October" name2="2000" value="17"/>
 </multibargraph>

 2001 2000

January

April
July

October

0
2
4
6
8

10
12
14
16
18
20

14
12

8

13
17

12
14

19

Notice the “name2” attribute on the GDATA elements. This sets the name of the values on the second axes, and is used with
TOWERBARGRAPH and MULTIBARGRAPH graphs as well. We also set the “display-barvalues” attribute to middle and slightly
reduced the bar-width, which can help the legibility of this type of graph.

Page 49 of 76

Tower Bar Graphs

The third option for plotting bargraphs is a TOWERBARGRAPH, which is more useful for showing cumulative values than
DEPTHBARGRAPH or MULTIBARGRAPH. Again note the “name2” attribute on the GDATA elements sets the second axes.

 <towerbargraph width="200" height="150" xaxis-rotate="45">
 <gdata name="January" name2="2001" value="19"/>
 <gdata name="April" name2="2001" value="14"/>
 <gdata name="July" name2="2001" value="12"/>
 <gdata name="October" name2="2001" value="17"/>
 <gdata name="January" name2="2000" value="13"/>
 <gdata name="April" name2="2000" value="8"/>
 <gdata name="July" name2="2000" value="12"/>
 <gdata name="October" name2="2000" value="14"/>
 </towerbargraph>

January

April
July

October

0

5

10

15

20

25

30

35

Floating Bar Graphs

The final option for plotting bargraphs is a FLOATINGBARGRAPH. Each bar in a floating bar-graph has two halves - the intention is
to show a minimum, a middle value (often an average) and a maximum. The positions on the bar are specified with the min-value,
mid-value and max-value attributes.

 <floatingbargraph width="140" height="150">
 <gdata name="Jan" min-value="10" mid-value="19" max-value="24"/>
 <gdata name="Feb" min-value="12" mid-value="17" max-value="28"/>
 <gdata name="Mar" min-value="11" mid-value="15" max-value="26"/>
 </floatingbargraph>

Jan Feb Mar
0

5

10

15

20

25

30

Bar graphs are unique amongst the different graphs in that they can use a “gradient fill” to display the colors. See the Colors section
for more information

Line Graphs

The LINEGRAPH element allows one or more “curves” to be plotted against an X and Y axis. We’ve already described the curves
above, so in this section we’ll focus on attributes specific to the LINEGRAPH element.

First up is an attribute specific to the LINEGRAPH element - the “line-thickness” attribute, which sets the thickness of the line used to
draw each curve. This attribute is unique in that it only has an effect if the graph is plotted in 2D (i.e. xrotation, yrotation and zrotation
are all zero). The default is 1.5. Similar in purpose but for 3D graphs is the “curve-depth” attribute, which controls how “deep” into the
page the curve is drawn. This defaults to 1, and applies to both LINEGRAPH and AREAGRAPH.

Page 50 of 76

There are several attributes which control the range of the axes on a LINEGRAPH. The “xaxis-at-zero” and “yaxis-at-zero” attributes
control where the X and Y axis values (and the “ywall” and “floor” attributes discussed in “Axes Graphs”, above) are drawn. These
boolean attributes both default to “true”, which means that the axes are drawn where x=0 and y=0, even though this may be in the
middle of the graph. Notice the difference with this sine curve.

Axes at zero

0

1
0.8
0.6
0.4
0.2

0-0.5-1-1.5-2-2.5-3
-0.2

0.5

-0.4

21.51

-0.6

32.5

-0.8
-1

Axes not at zero

1
0.8
0.6
0.4
0.2

0

32.521.510.50-0.5-1-1.5-2-2.5-3

-0.2
-0.4
-0.6
-0.8

-1

Next, an attribute which applies to LINEGRAPH and AREAGRAPH and is specific to plotting DATACURVES. The “max-data-
points” attribute allows the number of points actually plotted to be limited to a fixed number. This is most commonly done for speed -
if your database query returns 1000 elements to be plotted on the graph, but it’s only 2 inches wide, this could be set to a value (say
100) which would cause only every tenth data sample to be retained. By default this is set to 100.

Likewise for SIMPLECURVE elements, the “function-smoothness” attribute can be used to set the number of samples taken when
drawing a SIMPLECURVE. This defaults to 30, which is generally adequate, but may be set to any value.

When plotting DATACURVE curves on a LINEGRAPH, markers may be placed at each data sample by setting the “marker” attribute
of the DATACURVE. This can be set to either “none” (no marker, the default), “line” (which simply draws a line across the curve
where the value is, or “circle”, “square”, “diamond”, “octagon”, “uptriangle”, or “downtriangle”, which place the specified marker at
each sample as you’d expect. These values can optionally be prefixed with “big”, to double the size of the marker, “small” to reduce
the size, or suffixed with “noborder” to remove the black border around the markers or “only”, to draw just the marker, not the lines
connecting them. Example combinations include “circle”, “circle only”, “small diamond noborder only” or “big uptriangle only” -
here’s what that looks like.

marker="diamond"

 Measurements

2

1.8

1.6

1.4

1.2

1

0.8

0.6

210.4 76543

marker="big uptriangle only"

 Measurements

2

1.8

1.6

1.4

1.2

1

0.8

0.6

76543210.4

The “line” option is really only useful for 3D line graphs, and results in a black line across the curve where the sample is - similar to
the “segments” described in the AREAGRAPH section below.

When a marker is used on a curve, it may optionally be added to the key by adding the “-with-markers” suffix to the key type. The
graph on the right shown above has the “display-key” value set to “bottom-with-markers”, while the graph on the left has the attribute
simply set to “bottom”.

Page 51 of 76

Area Graphs

The AREAGRAPH is very similar to the LINEGRAPH, but is more appropriate for displaying cumulative data as the curves are
stacked on top of each other. Many of the AREAGRAPH attributes are described in the LINEGRAPH section above, as they apply to
both.

 <areagraph width="200" height="150">
 <datacurve name="Measurements">
 <sample x="1" y="0.5"/>
 <sample x="2" y="0.9"/>
 <sample x="3" y="1.3"/>
 <sample x="4" y="1.2"/>
 <sample x="5" y="1.7"/>
 <sample x="6" y="2"/>
 <sample x="7" y="1.8"/>
 </datacurve>
 <simplecurve name="Predicted"
 method="java.lang.Math.log"/>
 </areagraph>

 Measurements
 Predicted

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 70

0.5

1

1.5

2

2.5

3

3.5

4

As you can see, both DATACURVE and SIMPLECURVE can be mixed on the same graph. Noticable on the DATACURVE though are
the black lines dividing the curve into “segments”, and showing where the sample values are. These may not always be desirable, and
can be removed by setting “draw-segments” attribute to “false”.

The other difference between this and the LINEGRAPH is that the data values at each point are added together. This is the result of the
“cumulative” attribute, which defaults to true. Occasionally you may be working with pre-accumulated values, in which case setting
this attribute to “false” turns off this behaviour.

Plotting Dates

Both the LINEGRAPH and AREAGRAPH support plotting dates on the X axis, instead of numeric values. This can be done by setting
the xaxis-formatter to “date()” and the “x” attribute for the SAMPLE element to a valid date - recognized formats include
RFC822 (e.g. "Mon, 18 Feb 2002 17:26:18 +0100") and ISO8601 (e.g. "2001-02-18", "2001-02-18T17:26" or
"2001-02-18T17:26:18+0100"), although the recommended format is ISO8601. In this example we’ve also set the “xaxis-
formatter-density” to “sparse”, although this is optional. Here’s how:

 <areagraph width="200" height="150" xaxis-rotate="45"
 xaxis-formatter="date()"
 xaxis-formatter-density="sparse">
 <datacurve name="Measurements">
 <sample x="2001-10-01" y="0.5"/>
 <sample x="2001-10-05" y="0.9"/>
 <sample x="2001-10-10" y="1.3"/>
 <sample x="2001-10-15" y="1.2"/>
 <sample x="2001-10-20" y="1.7"/>
 <sample x="2001-10-25" y="2"/>
 <sample x="2001-10-30" y="1.8"/>
 </datacurve>
 </areagraph> Measurements

01 Oct 2001

07 Oct 2001

14 Oct 2001

21 Oct 2001

28 Oct 2001

30 Oct 2001

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Internally the date is converted to a number value, so if the “xaxis-formatter” isn’t set the results will look fairly strange. The smallest
unit of resolution with dates is a second, and using this method date ranges of between 2 seconds and 100 years can be plotted.

Page 52 of 76

Specifying Colors
Colors can be specified in the XML in a number of ways. Most people are familiar with the #RRGGBB notation, which specifies a
color in the default RGB colorspace used by the Report Generator. Colors can be specified in the following ways:

Color Example Description

none or transparent Specify no color is to be used

#FF0000 Specify a color in the documents RGB colorspace by setting the red
component to 0xFF and the green and blue components to 0x00.
Each component is on a scale from 0 to 255, so 0xFF is 100% red.

rgb(100%, 0, 0) Another method of specifying an RGB color, this is identical to
#FF0000. May also be specified as rgb(255,0,0)

gray(100%) Specify a color in the documents GrayScale colorspace. gray(0%)
is black and gray(100%) is white

cmyk(100%, 0%, 0%, 0%) Specify a color in the documents CMYK colorspace. The example
here would set the color to cyan.

black Specify a named color - one of the list of 140 named colors in the
current RGB colorspace (the list is the same list as used by HTML).
The full list of named colors is in the reference section and also in
the “colors.pdf” document in the docs directory of the package.

spot(“name”, cmyk(100%,72%,0%,6%)) Specify a spot color. Requires the name of the color, and the fallback
color to use if it’s unavailable

spot(“name”, cmyk(100%,72%,0%,6%), 50%) Specify a spot color and the intensity of that color. Requires the
name of the color, and the fallback color to use if it’s unavailable,
and the “intensity”, or how much of that ink to use. Values can range
from 100% (which is the same as the 2 argument form above) to 0%
(which is the same as transparency).

alpha(50%, #FF0000) Specify a semi-transparent version of a color (since 1.1.10). The first
parameter is the alpha value to use - 100% for a completely opaque
color, 0% for a completely transparent one. The second parameter
may be any one of the types of color listed above - so
alpha(50%, spot("Blue", cmyk(100%,72%,0%,6%)))
is a valid color, if a somewhat extreme example. Translucent colors
will only work with Acrobat 5 or later.

As well as the “plain” colors defined above, the Report Generator can use “pattern” colors when drawing text or as the background
color of an element. Document authors can choose from one of 8 different predefined patterns. Each pattern has a name, a foreground
color (indicated by “fg” in the following table) and a background color (indicated by “bg”), and then possibly more attributes
depending on the pattern. Here’s the list.

pattern(stripe,fg,bg,fgwidth,bgwidth,ang) The stripe pattern creates a striped color pattern.
The angle and width of each stripe can be set
separately - the width of the stripe in the foreground
color is set by fgwidth and the width in the
background color is set by bgwidth. The angle is set
by ang, and is specified in degrees clockwise from 12
o’clock.

Page 53 of 76

pattern(brick,fg,bg,width,height This brick pattern creates a brickwork pattern
(using the “running bond” style of bricklaying, for
what it’s worth). The width and height of each brick
must be specified.

pattern(check,fg,bg,size) The check pattern requires the size of each square
in the check to be specified.

pattern(grid,fg,bg,linewidth,spacewidth) The grid pattern creates a gridded pattern as shown
here. The width of the line and the width of the space
between the lines must be specified.

pattern(spot,fg,bg,size) A “spot” pattern similar to the pattern used for
halftoning in newspapers can be created with the
spot pattern. The size of each spot must be
specified.

pattern(polka,fg,bg,size) A different kind of “spot” pattern, containing a
number of different size random spots can be created
with the polka pattern. The average size of the
spots must be specified.

pattern(star,fg,bg,20) Finally, a pattern of repeating 5-pointed stars (like
those on the US flag) can be created with the star
pattern. The size of each star must be specified.

Here’s an example of how to use a pattern as the background color, and a spot color as the foreground for a page header.

 <body background-color="pattern(stripes,#FFF0F0,#F0E0E0,5,5,45)">
 <h1 color="spot('PANTONE Reflex Blue CVC', cmyk(100%,72%,0%,6%))">
 Heading in Reflex Blue
 </h1>
 <p>
 The pages of this document have light pink stripes
 </p>
 </body>

Finally, for Bar Graphs only, it’s possible to fill a bar using a gradient fill. Specifying a color as gradient(red, blue) would
cause the bar in the graph to smoothly change from red to blue as the value increased. Here’s an example:

 <bargraph width="200" height="150" xaxis-rotate="45">
 <gdata color="gradient(red,blue)"
 name="Monday" value="19"/>
 <gdata color="gradient(green,yellow)"
 name="Tuesday" value="14"/>
 </bargraph>

M
onday

Tuesday

0

2

4

6

8

10

12

14

16

18

20

Page 54 of 76

Color Spaces

Each item in the document has three types of colorspace it can work with - RGB, CMYK and a GrayScale colorspace. By default, the
RGB colorspace is the sRGB calibrated colorspace used by Java, and the CMYK and GrayScale spaces are device-dependent. Any
RGB colors that are specified will use the RGB colorspace of the object, CMYK colors will use the CMYK colorspace, and grayscale
colors will use the GrayScale colorspace.

Any one of these colorspaces can be replaced by setting the “colorspace” attribute. If the value of the colorspace is a 3 component
colorspace, the elements RGB colorspace will be set. If the specified colorspace has 4 components, the elements CMYK space will be
set, and so on. This means that only one non-standard colorspace can be used per element - or, put another way, no element can use
both a calibrated CMYK and calibrated RGB colorspace (other than sRGB) at the same time. We doubt this will cause a problem for
many.

Valid values are “sRGB”, “DeviceCMYK” and “DeviceGray”, which set the colorspaces to the default values, or the URL of an ICC
color profile file. Here’s an example which calibrates the document to use the NTSC color profile. Note that although in theory any
element can have a different colorspace set, in practice it keeps everything simpler if you set the colorspace on the BODY element and
leave it. The one exception to this is images, which we’ll cover below.

 <body colorspace="http://path/to/NTSCspace.icc">
 <h1 color="#FF0000">
 This heading is in bright-red, according to the NTSC color profile
 </h1>
 </body>

PNG, TIFF and JPEG images may optionally have an ICC color profile embedded in the image - if one is found it will be used
automatically. The ability to override the colorspace for an image has been removed in version 1.1.10 - if the image needs to use a
particular colorspace, it should be embedded in the file.

Page 55 of 76

Hyperlinks
Hyperlinks can be used within PDF documents to navigate around the document, to load web pages in whatever web browser is
installed on the users system, and to allow a limited level of interaction between the document and it’s environment.

The familiar <A> element from HTML is a part of the Report Generators XML syntax, but unlike HTML it’s significance is limited to
stylistic changes only. Instead, the “href” attribute, which signifies a hyperlink, may be added to any element in the document. For
example, the following two lines are equivalent.

 go to website
 go to website

This opens up some possibilities not available in HTML - for example, a TABLE or PIEGRAPH element could be turned into a
hyperlink, simply by adding an “href” attribute. Be warned that the PDF specification is quiet about what happens if two hyperlink
areas overlap..

So what values can the “href” attribute take? This tables lists the possibilities:

Example Description

#elementid Jump to the specified element in the report. The “elementid” is the ID of the destination
element.

#elementid?zoom=fit Jump to the specified element in the report, and zoom the page so that just that element
is visible

http://domain.com Any URL may be specified to jump to an external document. This functionality requires
a web browser to be installed, and the exact form of the URL depends on the capabilities
of that browser

pdf:playsound(soundurl) Play an audio sample from the specified URL. The PDF specification can in theory
handle Sun .AU, Macintosh AIFF and AIFF-C and Windows RIFF (.WAV) files,
although RIFF support seems to be slightly more capable in our tests. This requires
sound support from the PDF viewer application, and may not work on all operating
systems.

pdf:show(form element) Show the specified form element if it is hidden. The form element must be the name of a
form element. See the Forms section.

pdf:hide(form element) Hide the specified form element if it is visible. The form element must be the name of a
form element. See the Forms section.

pdf:reset() Reset the documents form to it’s default values. See the Forms section.

pdf:submit(url [, method]) Submit the contents of the documents form to a URL. The method is optional - it
defaults to “POST” - but if specified must be one of the following values:

POST Post the form using the standard HTTP POST method

FDF Post the form in Adobes Form Description Format (FDF)

XML Post the form as XML (requires Acrobat 5.0)

PDF Post the entire document (requires Acrobat 5.0)

See the Forms section.

javascript:code Run a section of JavaScript code. See the Forms section.

pdf:action Run a “named” action - PDF viewer dependent, see below

Page 56 of 76

The facility to run “named” actions can be very useful, provided you know which PDF viewer application your target audience is
running. For the vast majority who run Acrobat 4.0 or greater, the following named actions may be used - they loosely correspond to
the equivalent actions which can be run from the drop down menus in Acrobat. These values are case-sensitive.

Action name Description

Open Open the “open file” dialog

Close Close the current document

Print Print the current document

GeneralInfo Bring up the “general information” dialog

FontsInfo Bring up the “fonts information” dialog

SecurityInfo Bring up the “security information” dialog

Quit Quit the PDF viewer

NextPage Go to the next page

PrevPage Go to the previous page

FirstPage Go to the first page

LastPage Go to the last page

GoToPage Bring up the “Go to page” dialog

Action name Description

Find Bring up the “Find” dialog

FindAgain Repeat the last search

SelectAll Select the entire page

Copy Copy the selection to the clipboard

FullScreen Switch the document to fullscreen mode

FitPage Zoom the document to fit the page

ActualSize Zoom the document to actual size

FitWidth Zoom the document to fit the width

FitVisible Zoom the document to fit the entire page

SinglePage Set the document to “Single page” mode

OneColumn Set the document to “One column” mode

TwoColumns Set the document to “Two columns” mode

Page 57 of 76

Interactive Forms support
New in version 1.1 is the ability to include Form elements in the document. Interactive forms are one of the more underused aspects of
PDF, but certainly one of the more interesting. There’s a great deal more to forms than we cover here - we highly recommend
purchasing a book on the subject, and experimenting with a copy of Acrobat to see what’s possible. This section will document only
the syntax used to add form elements to the Report Generator, not the reasons why you would. The use of interactive forms
(specifically, the <INPUT> tag) requires the Extended Edition of the product.

Like HTML forms, a document can contain text boxes, drop down lists, radio buttons, check boxes, regular “submit” buttons and even
JavaScript! The main differences are that the JavaScript object model is radically different, that each PDF only has a single form
(unlike HTML), and that the form isn’t tied to a single “submit” URL - instead, each submit button (there may be more than one)
specifies the URL to submit to. Form elements are not covered by CSS2, so we’ve based our implementation fairly closely on
HTML4.0, with a couple of simplifications.

 <table><tr>
 <td>Name</td>
 <td><input type="text" name="name" width="10em"/></td>
 </tr><tr>
 <td>Address</td>
 <td><input type="text" name="address" lines="3" width="10em"/></td>
 </tr><tr>
 <td>Sex</td>
 <td>
 Male <input display="inline" type="radio" name="sex" value="male" padding-right="0.2in"/>
 Female <input display="inline" type="radio" name="sex" value="female"/>
 </td>
 </tr><tr>
 <td>Country</td>
 <td>
 <input type="select" name="country" value="Cameroon">
 <option>Cameroon</option>
 <option>Lebanon</option>
 <option>Other</option>
 </input>
 </td>
 </tr><tr>
 <td>Email me</td>
 <td><input type="checkbox" name="email" checked="true"/></td>
 </tr><tr>
 <td colspan="2" align="center">
 <input type="button" name="submit" onClick="pdf:submit(http://localhost, POST)"/>
 </td>
 </tr></table>

Name

Address

Sex Male Female

Country

Email me

Much of this should look fairly familiar to HTML authors. The key differences here are:

• The “name” and “type” values are mandatory, and each name must be unique across the entire document.

Page 58 of 76

• As well as the “value” attribute, which can be set for every type of form field, the fields can take a “default-value” attribute, which
controls what the field is reset to when a pdf:reset() action is run.

• Multiline text boxes don’t use the <textarea> tag, but are identical to normal text boxes - just set the “lines” attribute to the number
of lines that are required. You can also optionally set the “scrollable” attribute to false, to prevent users from scrolling the box to
enter more text. Initial values can be set either in the “value” attribute, or between the <input> and </input> tags.

• Drop down lists don’t use the <select> tag, but instead use a regular INPUT element with a “type” of “select”. It does use the
OPTION elements to list the options, but the selected option is chosen by setting the “value” attribute on the INPUT. It’s not
currently possible to select more than one option in a list. For multi-line lists just add a “lines” attribute, in the same way as the
multiline text-boxes. Another variation is to set the “editable” attribute to “true”, which will turn the drop-down into a combo box -
the user can type their own values into the box as well as choose one from the list.

• There’s no submit button - instead, a regular button with an “onClick” attribute does the same job. In fact, the “onClick” action may
be any type of hyperlink that’s supported by the Report Generator. Buttons can also take a “src” attribute, which can be the URL of
an image which will be pasted onto the button.

• Every form element recognises the boolean attributes “readonly”, which prevents the form from interacting with the user, “required”
- which means the field must have a value in it befor the form is submitted - and “submitted”, which is on by default, but may be
turned off to prevent the field from being submitted to the server, and is useful for fields used only for cosmetic or temporary
purposes.

JavaScript

One of the aspects we haven’t demonstrated is JavaScript, which is supported in Acrobat 4.0 and 5.0, both the Reader and the full
version of Acrobat. Although the syntax is identical to the JavaScript used in web browsers, the Document Object Model is radically
different - do not expect your HTML JavaScript to work in Acrobat. Acrobats object model is documented in the AcroJS.pdf
document supplied with retail versions of Acrobat. We won’t go into too much detail about the syntax, but will limit our discussion to
showing you how to embed JavaScript code into your report.

Like HTML, we use the SCRIPT tag in the HEAD of the document to embed JavaScript. However, due to JavaScript code commonly
containing the < and > characters, we recommend embedding it inside a “CData” block, like so:

 <pdf>
 <head>
 <script>
 <![CDATA[
 function dumpForm()
 {
 var s="";
 s += "Your name is '"+this.getField("name").value+"'\n";
 s += "Your country is '"+this.getField("country").value+"'\n";
 s += "Your sex is '"+this.getField("sex").value+"'\n";
 app.alert(s);
 }
]]>
 </script>
 </head>

Then to call this function, simply create a link or button that runs the action javascript:dumpForm(). Click here to see what we
mean.

Two actions we haven’t demonstrated yet are the “pdf:show” and “pdf:hide” actions. These can only be used with form fields, and
although not terribly useful they’re interesting enough to demonstrate here. Roll your mouse over this link and keep an eye on the
“address” box on the previous page.

This example is useful because it demonstrates an “event” handler. We’ve seen one example of these already - the “onClick” attribute
on the “submit” button in the previous example. In fact, there are several to choose from, but although the “onMouseOver”,

Page 59 of 76

“onMouseOut” and “onClick” handlers can be used with any element in the same way as the “href” attribute, the rest are limited to use
with form fields.

Attribute Description

onClick The action to perform when the element of form field is clicked. Identical in function to “href”, the two
attributes can be used interchangeably

onMouseOver The action to perform when the mouse moves over the element or form field.

onMouseOut The action to perform when the mouse moves out of the element or form field.

onMouseDown The action to perform when the mouse button is clicked in the form fields focus area.

onMouseUp The action to perform when the mouse button is released in the form fields focus area.

onFocus The action to perform when the field gains focus (text elements only)

onBlur The action to perform when the field loses focus (text elements only)

onChange The action to perform when the value of the field has changed

onKeyPress The action to perform when a key is pressed in the form field (text elements only). Use for limiting input
into the field to digits (for example).

onFormat The action to perform when the contents of the field is about to be redisplayed.

onOtherChange The action to perform when the value of one of the other fields has changed. This is commonly used in
conjunction with read-only fields, to show a value based on the contents of other fields.

Digital Signatures

Although still a type of form field, Digital Signatures are handled quite differently from the other fields - so we’ll cover them
seperately. Digital signatures allow a PDF report to be signed before distribution. Like the other form fields, using this feature requires
the Extended Edition of the product.

These are useful for two main purposed - one, to identify the author of the document, and two, to provide notice if the document has
been altered after it was signed. This is done by calculating a checksum of the document, and then encrypting that checksum with the
“private key” of the author, which can later be verified by a user with the full version of Adobe Acrobat or Acrobat Approval™,
although not the free Acrobat Reader, by comparing it with the corresponding public key.

Digital Signatures are implemented in Acrobat via a plug-in or “handler”. As of 2018 the vast majority of signatures use the standard
Adobe signature model and require the “handler” attribute to be set to “acrobat”. We also support “globalsign” as a value since 1.1.63,
to use the GlobalSign signing service.

Currently signatures are limited in that only one signature may be applied to a document, otherwise an Exception is thrown.

Digital signatures are defined using an INPUT tag - the same tag used in HTML to define form elements (this is because digital
signatures are part of the PDF version of a form, which we’ll be adding more support for in later releases). The tag can be placed
anywhere in the body of the document, and doesn’t require a <FORM> like HTML. Here’s a quick look at a typical signature tag:

<input type="signature" name="sig1" keystore="mystore" password="secret" handler="acrobat"/>

and here’s an example showing how to use the “globalsign” handler for signing.

<input type="signature" name="sig1" keystore="mystore" password="secret" handler="globalsign"
 login="0123456789012345 0123456789..." identity="OU=Test Unit"/>

Page 60 of 76

There are a number of attributes that apply only to digital signatures.

Attribute Description

type (Mandatory) The type of INPUT tag. Must be “signature” for digital signatures

name (Mandatory) The name to give the form field.

keystore (Mandatory) The URL of the keystore containing the private key to sign the document with.

handler (Mandatory) The Digital Signature handler that will be used to verify the document. The value
should be “acrobat” for most signatures, or “globalsign” for the Globalsign signing service. The
values “acrobat6”, “verisign” and “selfsign” are all legacy synonyms for “acrobat”.

password (Optional) The password required to open the keystore.

alias (Optional) The alias or “friendly name” given to the private key in the keystore. Defaults to
“mykey”.

keypassword (Optional) The password to open the private key in the keystore. Defaults to the value of the
password attribute.

keystoretype (Optional) The type of keystore. Usually will be either “JKS” for “Java Keystore” or some other
value like “pkcs12”, which depends on what JCE providers are available. May optionally include a
hyphen, followed by a provider name - for example “JKS-SUN” to load the Sun implementation of
the JKS keystore, or “pkcs12-BC” for the PKCS#12 implementation by The Legion of the Bouncy
Castle. Defaults to “JKS”.

signer (Optional) The name of the person or entity signing the document. For informational purposes only.
Defaults to the name on the signing certificate.

location (Optional) The location where the document was signed. For informational purposes only.

reason (Optional) The reason why the document was signed. For informational purposes only.

ocsp (Optional) If true, the certificates used for signing will be verified against their OCSP and CRL
responders at the time of signing. This is required for “long-term validation” of signatures.

timestampurl (Optional) May be set to the URL of a RFC3161 time stamp server to time-stamp the signature. This
is required for “long-term validation” of signatures.

background-image /
background-pdf

(Optional) An image to display as the content of the signature annotation. This should be used
carefully - in particular, the image should ideally be transparent enough that it doesn’t completely
mask out the area it covers. Alternatively a “background-pdf” may be used instead - it functions the
same way.

login (Required for Globalsign signatures). When handler is “globalsign”, this attribute must be set to the
login details for the Globalsign service; either the apikey and apisecret, seperated by a space, or the
path to the encrypted file containing this information which is supplied by Globalsign

identity (Required for Globalsign signatures). When handler is “globalsign”, this attribute must be set to the
identity details for the Globalsign service; either an X.500 principal, the path to an X.509 certificate
to extract the identity from, or a JSON object describing the identity, the structure of which is
described in the Globalsign documentation.

We’re only skimming the surface of this topic for now. A considerably more in-depth coverage of digital signatures (including how to
generate test keys for signing and verify the signed document using Acrobat) is in the PDF library user guide.

http://www.bouncycastle.org
http://www.bouncycastle.org
http://bfo.com/products/pdf/docs/userguide.pdf

Page 61 of 76

PDF/A and PDF/UA Support
Since 1.1.47 the Report Generator can generate PDF/A documents - PDF/A-1, A-2 or A-3. These are the same as regular PDFs, with a
few restrictions:

• All fonts must be embedded. This includes fonts in graphs, and fonts used as the markers in unordered lists (eg to draw the bullet)

• An Output Intent must be specified and an ICC profile embedded - either RGB or CMYK

• All colors must match this ICC profile - so if an sRGB profile is embedded, all colors in the PDF must be RGB. Transparency is not
allowed.

• All images must match the embedded ICC profile, or the image must include an embedded ICC profile itself. Transparency is not
allowed in PDF/A-1, but is in PDF/A-2 and A-3

• Form fields are problematic, and should be avoided in PDF/A-1.

• JavaScript is not allowed.

Converting a document that meets these requirements to PDF/A should be as simple as setting the output-profile meta-tag to
“PDF/A3b”, then setting the output-intent-icc meta-tag to the URI of the ICC profile to embed amd the
output-intent-identifier meta-tag to the name of the profile. So, for example

<meta name="output-intent-identifier" value="sRGB"/>
<meta name="output-intent-icc" value="resources/sRGB.icc" />
<meta name="output-profile" value="PDF/A1b"/>

The value for “output-profile” can choose from the different revisions of the PDF/A specification (1 to 3 at the time of writing) and the
different conformance levels, which are currently “a”, “b” and “u”. Examples are “PDF/A1b”, “PDF/A2u”, “PDF/A3a” etc. There are
two example supplied with the Report Generator in the samples folder, one for CMYK and one for RGB, to get you started.

PDF/UA is a similar concept to PDF/A, but is focused on Accessibility rather than long-term archiving like PDF/A. Because of this it
imposes restrictions on the structure of the document; for example, a <td> must be contained inside a <table/>, and all
elementa must have an “alt” attribute. Many of these restrictions are simply formalising the common structure of HTML, which is
largely the same as the requirements for a the Report Generator. Where that’s not the case, the Report Generator will throw an
exception when it hits the invalid XML. With luck the text of the exception will tell you what you need to know, but please do email
support@bfo.com if that’s not the case.

Again, as for PDF/A there are examples in the “samples” folder which show how to create a simple PDF/UA document.

Finally, it is possible to create a document that meets the requirements of both PDF/A and PDF/UA - in fact, if you’re already
targetting PDF/UA it’s is a good idea, as you’ve already done most of the work. Just add “+PDF/UA1” to the value of any other
output-profile value. For example:

<meta name="output-intent-identifier" value="sRGB"/>
<meta name="output-intent-icc" value="resources/sRGB.icc" />
<meta name="output-profile" value="PDF/A3a+PDF/UA1"/>

Page 62 of 76

Migrating from HTML
Migrating a document from HTML to XML may be easy or difficult, depending on how the HTML has been written. Following these
four steps will account for 95% of the changes that are required.

1. The first, and probably most painful step is to ensure that all tags are closed and all attributes are quoted, so that the document
meets the XML specification. Elements that don’t officially require closure, like TD, LI, P, as well as tags with no content like
BR and IMG are likely to be the cheif cause of problems. We find the insistance on quoting even unambiguous attributes
annoying, and we’re pleased to see that at least one XML parser (that supplied with Resin 2.0) has the option of being lax about
this requirement.

2. Second, if any non-CSS legacy attributes are used (e.g. “bgcolor” to set the background color), these should be converted to
their CSS equivalent (e.g. “background-color”, and placed in a stylesheet in the head of the document (either embedded or
external). Versions of the Report Generator since 1.0.11 recognise the style="background-color:red" method of
defining attributes, although we still recommend the XML equivalent of background-color="red".

3. Third, check the document for inline images, tables, lists or other blocks inside paragraphs. We’ve found this to be a common
occurance, due to HTML not requiring a closing </P> tag.

4. Fourth and finally, change the tags that have a different syntax. These are:

• TABLE - the HTML attributes “border” and “cellmargin” should be renamed “cellborder” and “cellmargin”.

• The legacy FONT element should be replaced with an equivalent SPAN

• The various different styles of paragraph and span available in HTML - ADDRESS, CITE etc. should be replaced with a P or
SPAN, setting the “class” attribute to control the style.

• Definition lists using the DL, DT and DT elements aren’t supported, and should be replaced wither either a normal UL list
with the “value” attribute set to the definition, or a TABLE.

Provided that no JavaScript, forms or frames are used, these steps should result in a report that is legible and ready to be tailored for
it’s eventual destination as a PDF document.

Page 63 of 76

Internationalization
The vast majority of the worlds languages can be used with the Report Generator. Thanks to XML’s natural character set of UTF-8, as
well as it’s ability to use “preferred” native character sets like Shift-JIS or EUC-KR, specifying the actual characters to display is not a
problem. When editing your XML just remember to save the file in the correct encoding - UTF-8 unless you’ve specified otherwise.

When it comes to actually displaying the characters, the key is to use the right font. The standard fonts (Helvetica, Times and Courier)
will, as far as we know, display the following languages correctly:

English, French, German, Portuguese, Italian, Spanish, Dutch (no “ij” ligature), Danish, Swedish, Norwegian, Icelandic, Finnish,
Polish, Croatian, Czech, Hungarian, Romanian, Slovak, Slovenian, Latvian, Lithuanian, Estonian, Turkish, Catalan (although the “L
with dot” character is missing), Basque, Albanian, Rhaeto-Romance, Sorbian, Faroese, Irish, Scottish, Afrikaans, Swahili, Frisian,
Galician, Indonesian/Malay and Tagalog.

For Chinese, Japanese and Korean the obvious choice is to use the standard east asian fonts like “hygothic”, “heiseimin” and
“mhei” (the full list is in the Fonts section).

For other languages like Czech, Slovenian, Russian or Hebrew that require characters not directly supported by the PDF specification,
the best method is to embed an appropriate OpenType or Type 1 font using the LINK element. Provided the font contains the
character, and the “embed” attributes is left at it’s default values of “true”, the characters should display correctly.

Right-to-left languages (arabic, hebrew, syriac and urdu) are supported. The “direction” attribute controls the overall flow of the text
and defaults to “rtl” for these languages, and can also be set manually. The “unicode-bidi” CSS property is not supported, so for
further control it is necessary to embed the correct byte-order marks in the text, eg ‫.

Every element in the document can have a language set using the “lang” attribute, which defaults to the current locale of the PDF
generation process. This attribute affects a few things - the style of quote substitution if the “requote” attribute is true, the type of
currency format to use when a “currency()” formatter is used with graphs, default text direction, default font (if the language is
Chinese, Japanese or Korean) and default page size - for en_US, en_CA and fr_CA the default is Letter, for everyone else it’s A4.

Examples would be “de” for German and “en_GB” for British English. Generally it is enough to set the “lang” attribute of the <pdf>
element, which sets the language for the entire document.

When creating documents from JSP pages, remember to set the character set to match the <?xml?> declaration. This also applies to
pages included via the <jsp:include> method. The following examples are all valid:

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <%@ page language="java" contentType="text/xml"%>
 <!-- document follows in ISO-8859-1 -->

 <?xml version="1.0"?>
 <%@ page language="java" contentType="text/xml; charset=UTF-8"%>
 <!-- document follows in UTF-8 -->

 <?xml version="1.0" encoding="ShiftJIS"?>
 <%@ page language="java" contentType="text/xml; charset=ShiftJIS"%>
 <!-- document follows in Shift JIS -->

Page 64 of 76

Word and line-breaking rules for east-asian text follow the rules outlined in css-text-3. The line-break and word-break CSS
properties are available as of release 1.1.63 (although the ‘break-word’ value of word-break is not supported). If these properties are
unset, for compatibility with previous releases we default to the behaviour prior to 1.1.62 However if either is specified, the other will
default to “normal”. In addition, when the line-break property is set to “loose” or “normal”, the language of the content will also affect
the algorithm: as defined in css-text-3, text in Japanese or Chinese is split differently. Some examples:

 // legacy line break behaviour
 <body> ... </body>...

 // line-break and word-break both set to "normal"
 <body style="word-break: normal"> ... </body>...

 // line-break set to loose, word-break set to "normal"
 <body style="line-break: loose"> ... </body>...

 // line-break set to loose, word-break set to "normal", and the special rules
 // for breaking Japanese characters defined in css-text-3 will be applied
 <body lang="ja" style="line-break: loose"> ... </body>...

 // the special value of "-bfo-legacy" can be used to reset the behaviour to 1.1.62
 // and earlier
 <body style="line-break: -bfo-legacy; word-break: -bfo-legacy"> ... </body>...

Problems, Limitations and Future Direction
Several changes are planned for the next release, listed here in no particular order. We’d greatly appreciate additions or feedback on
this list.

• The collapsing border model for tables needs to be implemented

• Running headers and footers are planned

• We plan to support “subpages” - dividing a page up into smaller sections like columns or quarters.

Following is a list of known problems and limitations with the generator.

Limit on nesting the “overflow” attribute

Due to the way the “overflow” attribute is implemented and to limitations in the PostScript language, elements with the “overflow”
attribute set to “hidden” shouldn’t be nested more than 12 deep for compatibility with Acrobat 4.0, or 28 deep for Acrobat 5.0 or later

Differences with CSS2 specification

For those that take specification compliance seriously, here is a list of the differences between the CSS2 specification and our
implementation of it. Numbers refer to the section of the spec at http://http://www.w3.org/TR/REC-CSS2. Over time the length of this
list will shorten as we head towards full CSS2 compliance.

 4.1.5 At rules (like @import or @charset) are not supported
 4.2 Parsing errors throw an error, and are not ignored.
 5.11 Only the :lang and :first-child (and the custom :last-child) pseudo selectors are used.
 7. Media types are not used (we've only got the one media - PDF)
 8.5.3 Border style - double, groove, ridge, inset and outset are not used
 9.2.5 The "display" property defaults to "block", not "inline".
 9.4 "bottom" and "right" aren't used for positioning, only "top" and "left"
 9.9.1 "z-index" isn't supported. Later elements will always be drawn over earlier ones.
 9.10 Changing text-direction in the middle of a word won't work. Ensure there is always
 a space between phrases with different directions.
 10.4 max-width is ignored.
 10.7 max-height is ignored
 11.1.1 The clip rectangle value is always "auto"
 12. The generated content section is pretty different. We don't use this
 method for inserting quotes around text or numbers before lists. The way we do
 it is shown in the "lists.xml" example.
 13.1 We don't use the @page rule.
 13.2.3 We don't do the crop marks.
 13.3 The "page-break" attributes are only recognised on elements that are the direct
 child of the BODY element (the exception to this is the TR tag, which recognises
 it when these attributes is set to "join"). All elements other than P, PRE, H1-H4,
 BLOCKQUOTE and TABLE have the "page-break-inside" attribute set to "avoid".
 13.3.2 Named pages are not used.
 15.2.4 font-size-adjust is ignored.
 14.2.1 background-attachment doesn't apply to PDF
 15.3 We use a much simpler method for selecting fonts - you either embed it or you don't!
 16.3 overline and blink are not valid text-decorations
 16.4 text-shadow is ignored
 16.5 word-spacing isn't used (see justification-ratio though)
 17.6 The collapsing border model is not supported, and borders are always drawn around empty cells.
 18. User interface doesn't apply to PDF
 19. Aural style sheets doesn't apply to PDF

http://http://www.w3.org/TR/REC-CSS2

Reference Section

Named Colors

The following named colors can be used in the Report Generator. Their equivalent RGB values are listed below.

white
#FFFFFF

whitesmoke
#F5F5F5

ghostwhite
#F8F8FF

snow
#FFFAFA

gainsboro
#DCDCDC

lavender
#E6E6FA

aliceblue
#F0F8FF

lavenderblush
#FFF0F5

seashell
#FFF5EE

lightcyan
#E0FFFF

azure
#F0FFFF

floralwhite
#FFFAF0

oldlace
#FDF5E6

mintcream
#F5FFFA

honeydew
#F0FFF0

linen
#FAF0E6

ivory
#FFF0F0

lightyellow
#FFFFE0

beige
#F5F5DC

antiquewhite
#FAEBD7

cornsilk
#FFF8DC

lemonchiffon
#FFFACD

lightgoldenrodyellow
#FAFAD2

mistyrose
#FFE4E1

bisque
#FFE4C4

papayawhip
#FFEFD5

blanchedalmond
#FFFFCD

peachpuff
#FFEFD5

palegoldenrod
#EEE8AA

wheat
#F5DEB3

moccasin
#FFE4B5

navajowhite
#FFDEAD

khaki
#F0E68C

yellow
#FFFF00

gold
#FFD700

goldenrod
#DAA520

darkkhaki
#BDB76B

tan
#D2B48C

peru
CD853F

darkgoldenrod
#B8860B

rosybrown
#BC8F8F

burlywood
#DEB887

sandybrown
#F4A460

saddlebrown
#8B4513

lightsalmon
#FFA07A

salmon
#FA8072

coral
#FF7F50

peachpuff
#FFEFD5

darksalmon
#E9967A

lightcoral
#F08080

darkorange
#FF8C00

orange
#FFA500

mistyrose
#FFE4E1

lightpink
#FFB6C1

pink
#FFC0CB

hotpink
#FF69B4

palevioletred
#DB7093

mediumvioletred
#C71585

thistle
#D8BFD8

plum
#DDA0DD

mediumorchid
#BA55D3

mediumpurple
#9370DB

darkmagenta
#8B008B

navy
#000080

mediumslateblue
#7B68EE

cornflowerblue
#6495ED

mediumblue
#0000CD

deepskyblue
#00BFFF

lightskyblue
#87CEFA

powderblue
#B0E0E6

skyblue
#87CEEB

lightblue
#ADD8E6

darkcyan
#008B8B

cadetblue
#5F9EA0

steelblue
#4682B4

lightsteelblue
#B0C4DE

teal
#008080

lightseagreen
20B2AA

mediumaquamarine
#66CDAA

darkseagreen
#8FBC8F

darkturquoise
00CED1

mediumturquoise
#48D1CC

turquoise
#40E0D0

paleturquoise
#AFEEEE

aquamarine
#7FFFD4

aqua
00FFFF

cyan
#00FFFF

lightcyan
#E0FFFF

mediumspringgreen
#00FA9A

springgreen
#00FF7F

greenyellow
#ADFF2F

lawngreen
#7CFC00

lime
#00FF00

limegreen
#32CD32

chartreuse
#7FFF00

lightgreen
#90EE90

palegreen
#98FB98

yellowgreen
#9ACD32

lightgrey
#D3D3D3

gainsboro
#DCDCDC

silver
#C0C0C0

darkgray
#A9A9A9

gray
#808080

black
#000000

indianred
#CD5C5C

tomato
#FD6347

orangered
#FF4500

red
#FF0000

maroon
#800000

darkred
#8B0000

crimson
#DC143C

deeppink
#FF1493

brown
#A52A2A

chocolate
#D2691E

sienna
#A0522D

firebrick
#B22222

magenta
#FF00FF

fuchsia
#FF00FF

violet
#EE82EE

orchid
#DA70D6

indigo
#4B0082

slateblue
#6A5ACD

darkslateblue
#483D8B

midnightblue
#191970

darkblue
#00008B

blue
#0000FF

royalblue
#4169E1

dodgerblue
#1E90FF

mediumseagreen
#3CB371

seagreen
#2E8B57

green
#008000

darkgreen
#006400

olive
#808000

darkolivegreen
#556B2F

olivedrab
#6B8E23

forestgreen
#228B22

darkslategray
#2F4F4F

dimgray
#696969

slategray
#708090

lightslategray
#778899

Named Entities

The following named entities are understood by the Report Generator.

Name Symbol CodePoint Description

zwnbsp U+feff zero width non breaking space. Best use NOBR instead.

nbsp U+00a0 no-break space = non-breaking space ISOnum

iexcl ¡ U+00a1 inverted exclamation mark ISOnum

cent ¢ U+00a2 cent sign ISOnum

pound £ U+00a3 pound sign ISOnum

curren ¤ U+00a4 currency sign ISOnum

yen ¥ U+00a5 yen sign = yuan sign ISOnum

brvbar ¦ U+00a6 broken bar = broken vertical bar ISOnum

sect § U+00a7 section sign ISOnum

uml ¨ U+00a8 diaeresis = spacing diaeresis ISOdia

copy © U+00a9 copyright sign ISOnum

ordf ª U+00aa feminine ordinal indicator ISOnum

laquo « U+00ab left-pointing double angle quotation mark = left pointing guillemet ISOnum

not ¬ U+00ac not sign = discretionary hyphen ISOnum

shy - U+00ad soft hyphen = discretionary hyphen ISOnum. This character is used in the Unicode (as
opposed to the HTML sense), which means it’s only displayed if a word break occurs at the
specified position.

reg ® U+00ae registered sign = registered trade mark sign ISOnum

macr ¯ U+00af macron = spacing macron = overline = APL overbar ISOdia

deg ° U+00b0 degree sign ISOnum

plusmn ± U+00b1 plus-minus sign = plus-or-minus sign ISOnum

sup2 ² U+00b2 superscript two = superscript digit two = squared ISOnum

sup3 ³ U+00b3 superscript three = superscript digit three = cubed ISOnum

acute ´ U+00b4 acute accent = spacing acute ISOdia

micro µ U+00b5 micro sign ISOnum

para ¶ U+00b6 pilcrow sign = paragraph sign ISOnum

middot · U+00b7 middle dot = Georgian comma = Greek middle dot ISOnum

cedil ¸ U+00b8 cedilla = spacing cedilla ISOdia

sup1 ¹ U+00b9 superscript one = superscript digit one ISOnum

ordm º U+00ba masculine ordinal indicator ISOnum

raquo » U+00bb right-pointing double angle quotation mark = right pointing guillemet ISOnum

frac14 ¼ U+00bc vulgar fraction one quarter = fraction one quarter ISOnum

Name Symbol CodePoint Description

frac12 ½ U+00bd vulgar fraction one half = fraction one half ISOnum

frac34 ¾ U+00be vulgar fraction three quarters = fraction three quarters ISOnum

iquest ¿ U+00bf inverted question mark = turned question mark ISOnum

Agrave À U+00c0 latin capital letter A with grave = latin capital letter A grave ISOlat1

Aacute Á U+00c1 latin capital letter A with acute ISOlat1

Acirc Â U+00c2 latin capital letter A with circumflex ISOlat1

Atilde Ã U+00c3 latin capital letter A with tilde ISOlat1

Auml Ä U+00c4 latin capital letter A with diaeresis ISOlat1

Aring Å U+00c5 latin capital letter A with ring above = latin capital letter A ring ISOlat1

AElig Æ U+00c6 latin capital letter AE = latin capital ligature AE ISOlat1

Ccedil Ç U+00c7 latin capital letter C with cedilla ISOlat1

Egrave È U+00c8 latin capital letter E with grave ISOlat1

Eacute É U+00c9 latin capital letter E with acute ISOlat1

Ecirc Ê U+00ca latin capital letter E with circumflex ISOlat1

Euml Ë U+00cb latin capital letter E with diaeresis ISOlat1

Igrave Ì U+00cc latin capital letter I with grave ISOlat1

Iacute Í U+00cd latin capital letter I with acute ISOlat1

Icirc Î U+00ce latin capital letter I with circumflex ISOlat1

Iuml Ï U+00cf latin capital letter I with diaeresis ISOlat1

ETH Ð U+00d0 latin capital letter ETH ISOlat1

Ntilde Ñ U+00d1 latin capital letter N with tilde ISOlat1

Ograve Ò U+00d2 latin capital letter O with grave ISOlat1

Oacute Ó U+00d3 latin capital letter O with acute ISOlat1

Ocirc Ô U+00d4 latin capital letter O with circumflex ISOlat1

Otilde Õ U+00d5 latin capital letter O with tilde ISOlat1

Ouml Ö U+00d6 latin capital letter O with diaeresis ISOlat1

times × U+00d7 multiplication sign ISOnum

Oslash Ø U+00d8 latin capital letter O with stroke = latin capital letter O slash ISOlat1

Ugrave Ù U+00d9 latin capital letter U with grave ISOlat1

Uacute Ú U+00da latin capital letter U with acute ISOlat1

Ucirc Û U+00db latin capital letter U with circumflex ISOlat1

Uuml Ü U+00dc latin capital letter U with diaeresis ISOlat1

Yacute Ý U+00dd latin capital letter Y with acute ISOlat1

THORN Þ U+00de latin capital letter THORN ISOlat1

Name Symbol CodePoint Description

szlig ß U+00df latin small letter sharp s = ess-zed ISOlat1

agrave à U+00e0 latin small letter a with grave = latin small letter a grave ISOlat1

aacute á U+00e1 latin small letter a with acute ISOlat1

acirc â U+00e2 latin small letter a with circumflex ISOlat1

atilde ã U+00e3 latin small letter a with tilde ISOlat1

auml ä U+00e4 latin small letter a with diaeresis ISOlat1

aring å U+00e5 latin small letter a with ring above = latin small letter a ring ISOlat1

aelig æ U+00e6 latin small letter ae = latin small ligature ae ISOlat1

ccedil ç U+00e7 latin small letter c with cedilla ISOlat1

egrave è U+00e8 latin small letter e with grave ISOlat1

eacute é U+00e9 latin small letter e with acute ISOlat1

ecirc ê U+00ea latin small letter e with circumflex ISOlat1

euml ë U+00eb latin small letter e with diaeresis ISOlat1

igrave ì U+00ec latin small letter i with grave ISOlat1

iacute í U+00ed latin small letter i with acute ISOlat1

icirc î U+00ee latin small letter i with circumflex ISOlat1

iuml ï U+00ef latin small letter i with diaeresis ISOlat1

eth ð U+00f0 latin small letter eth ISOlat1

ntilde ñ U+00f1 latin small letter n with tilde ISOlat1

ograve ò U+00f2 latin small letter o with grave ISOlat1

oacute ó U+00f3 latin small letter o with acute ISOlat1

ocirc ô U+00f4 latin small letter o with circumflex ISOlat1

otilde õ U+00f5 latin small letter o with tilde ISOlat1

ouml ö U+00f6 latin small letter o with diaeresis ISOlat1

divide ÷ U+00f7 division sign ISOnum

oslash ø U+00f8 latin small letter o with stroke, = latin small letter o slash ISOlat1

ugrave ù U+00f9 latin small letter u with grave ISOlat1

uacute ú U+00fa latin small letter u with acute ISOlat1

ucirc û U+00fb latin small letter u with circumflex ISOlat1

uuml ü U+00fc latin small letter u with diaeresis ISOlat1

yacute ý U+00fd latin small letter y with acute ISOlat1

thorn þ U+00fe latin small letter thorn with ISOlat1

yuml ÿ U+00ff latin small letter y with diaeresis ISOlat1

OElig Œ U+0152 latin capital ligature OE ISOlat2

Name Symbol CodePoint Description

oelig œ U+0153 latin small ligature oe ISOlat2

Scaron Š U+0160 latin capital letter S with caron ISOlat2

scaron š U+0161 latin small letter s with caron ISOlat2

Yuml Ÿ U+0178 latin capital letter Y with diaeresis ISOlat2

circ ˆ U+02c6 modifier letter circumflex accent ISOpub

tilde ˜ U+02dc small tilde ISOdia

zwnj U+200c zero width non-joiner NEW RFC 2070

zwj U+200d zero width joiner NEW RFC 2070

lrm U+200e left-to-right mark NEW RFC 2070

rlm U+200f right-to-left mark NEW RFC 2070

ndash – U+2013 en dash ISOpub

mdash — U+2014 em dash ISOpub

lsquo ‘ U+2018 left single quotation mark ISOnum

rsquo ’ U+2019 right single quotation mark ISOnum

sbquo ‚ U+201a single low-9 quotation mark NEW

ldquo “ U+201c left double quotation mark ISOnum

rdquo ” U+201d right double quotation mark ISOnum

bdquo „ U+201e double low-9 quotation mark NEW

dagger † U+2020 dagger ISOpub

Dagger ‡ U+2021 double dagger ISOpub

permil ‰ U+2030 per mille sign ISOtech

lsaquo ‹ U+2039 single left-pointing angle quotation mark ISO proposed

rsaquo › U+203a single right-pointing angle quotation mark ISO proposed

euro € U+20ac euro sign NEW

trade ™ U+2122 trade mark sign ISOnum

fnof ƒ U+0192 latin small f with hook = function = florin ISOtech

Alpha Α U+0391 greek capital letter alpha

Beta Β U+0392 greek capital letter beta

Gamma Γ U+0393 greek capital letter gamma ISOgrk3

Delta ∆ U+0394 greek capital letter delta ISOgrk3

Epsilon Ε U+0395 greek capital letter epsilon

Zeta Ζ U+0396 greek capital letter zeta

Eta Η U+0397 greek capital letter eta

Theta Θ U+0398 greek capital letter theta ISOgrk3

Name Symbol CodePoint Description

Iota Ι U+0399 greek capital letter iota

Kappa Κ U+039a greek capital letter kappa

Lambda Λ U+039b greek capital letter lambda ISOgrk3

Mu Μ U+039c greek capital letter mu

Nu Ν U+039d greek capital letter nu

Xi Ξ U+039e greek capital letter xi ISOgrk3

Omicron Ο U+039f greek capital letter omicron

Pi Π U+03a0 greek capital letter pi ISOgrk3

Rho Ρ U+03a1 greek capital letter rho

Sigma Σ U+03a3 greek capital letter sigma ISOgrk3

Tau Τ U+03a4 greek capital letter tau

Upsilon Υ U+03a5 greek capital letter upsilon ISOgrk3

Phi Φ U+03a6 greek capital letter phi ISOgrk3

Chi Χ U+03a7 greek capital letter chi

Psi Ψ U+03a8 greek capital letter psi ISOgrk3

Omega Ω U+03a9 greek capital letter omega ISOgrk3

alpha α U+03b1 greek small letter alpha ISOgrk3

beta β U+03b2 greek small letter beta ISOgrk3

gamma γ U+03b3 greek small letter gamma ISOgrk3

delta δ U+03b4 greek small letter delta ISOgrk3

epsilon ε U+03b5 greek small letter epsilon ISOgrk3

zeta ζ U+03b6 greek small letter zeta ISOgrk3

eta η U+03b7 greek small letter eta ISOgrk3

theta θ U+03b8 greek small letter theta ISOgrk3

iota ι U+03b9 greek small letter iota ISOgrk3

kappa κ U+03ba greek small letter kappa ISOgrk3

lambda λ U+03bb greek small letter lambda ISOgrk3

mu µ U+03bc greek small letter mu ISOgrk3

nu ν U+03bd greek small letter nu ISOgrk3

xi ξ U+03be greek small letter xi ISOgrk3

omicron ο U+03bf greek small letter omicron NEW

pi π U+03c0 greek small letter pi ISOgrk3

rho ρ U+03c1 greek small letter rho ISOgrk3

sigmaf ς U+03c2 greek small letter final sigma ISOgrk3

Name Symbol CodePoint Description

sigma σ U+03c3 greek small letter sigma ISOgrk3

tau τ U+03c4 greek small letter tau ISOgrk3

upsilon υ U+03c5 greek small letter upsilon ISOgrk3

phi φ U+03c6 greek small letter phi ISOgrk3

chi χ U+03c7 greek small letter chi ISOgrk3

psi ψ U+03c8 greek small letter psi ISOgrk3

omega ω U+03c9 greek small letter omega ISOgrk3

thetasym ϑ U+03d1 greek small letter theta symbol NEW

upsih ϒ U+03d2 greek upsilon with hook symbol NEW

piv ϖ U+03d6 greek pi symbol ISOgrk3

bull • U+2022 bullet = black small circle ISOpub

hellip … U+2026 horizontal ellipsis = three dot leader ISOpub

prime ′ U+2032 prime = minutes = feet ISOtech

Prime ″ U+2033 double prime = seconds = inches ISOtech

oline ‾ U+203e overline = spacing overscore NEW

frasl ⁄ U+2044 fraction slash NEW

weierp ℘ U+2118 script capital P = power set = Weierstrass p ISOamso

image ℑ U+2111 blackletter capital I = imaginary part ISOamso

real ℜ U+211c blackletter capital R = real part symbol ISOamso

alefsym ℵ U+2135 alef symbol = first transfinite cardinal NEW

larr ← U+2190 leftwards arrow ISOnum

uarr ↑ U+2191 upwards arrow ISOnum-->

rarr → U+2192 rightwards arrow ISOnum

darr ↓ U+2193 downwards arrow ISOnum

harr ↔ U+2194 left right arrow ISOamsa

crarr ↵ U+21b5 downwards arrow with corner leftwards = carriage return NEW

lArr ⇐ U+21d0 leftwards double arrow ISOtech

uArr ⇑ U+21d1 upwards double arrow ISOamsa

rArr ⇒ U+21d2 rightwards double arrow ISOtech

dArr ⇓ U+21d3 downwards double arrow ISOamsa

hArr ⇔ U+21d4 left right double arrow ISOamsa

forall ∀ U+2200 for all ISOtech

part ∂ U+2202 partial differential ISOtech

exist ∃ U+2203 there exists ISOtech

Name Symbol CodePoint Description

empty ∅ U+2205 empty set = null set = diameter ISOamso

nabla ∇ U+2207 nabla = backward difference ISOtech

isin ∈ U+2208 element of ISOtech

notin ∉ U+2209 not an element of ISOtech

ni ∋ U+220b contains as member ISOtech

prod ∏ U+220f n-ary product = product sign ISOamsb

sum ∑ U+2211 n-ary sumation ISOamsb

minus − U+2212 minus sign ISOtech

lowast ∗ U+2217 asterisk operator ISOtech

radic √ U+221a square root = radical sign ISOtech

prop ∝ U+221d proportional to ISOtech

infin ∞ U+221e infinity ISOtech

ang ∠ U+2220 angle ISOamso

and ∧ U+2227 logical and = wedge ISOtech

or ∨ U+2228 logical or = vee ISOtech

cap ∩ U+2229 intersection = cap ISOtech

cup ∪ U+222a union = cup ISOtech

int ∫ U+222b integral ISOtech

there4 ∴ U+2234 therefore ISOtech

sim ∼ U+223c tilde operator = varies with = similar to ISOtech

cong ≅ U+2245 approximately equal to ISOtech

asymp ≈ U+2248 almost equal to = asymptotic to ISOamsr

ne ≠ U+2260 not equal to ISOtech

equiv ≡ U+2261 identical to ISOtech

le ≤ U+2264 less-than or equal to ISOtech

ge ≥ U+2265 greater-than or equal to ISOtech

sub ⊂ U+2282 subset of ISOtech

sup ⊃ U+2283 superset of ISOtech

nsub ⊄ U+2284 not a subset of ISOamsn

sube ⊆ U+2286 subset of or equal to ISOtech

supe ⊇ U+2287 superset of or equal to ISOtech

oplus ⊕ U+2295 circled plus = direct sum ISOamsb

otimes ⊗ U+2297 circled times = vector product ISOamsb

perp ⊥ U+22a5 up tack = orthogonal to = perpendicular ISOtech

Name Symbol CodePoint Description

sdot ⋅ U+22c5 dot operator ISOamsb

lceil ⎡ U+2308 left ceiling = apl upstile ISOamsc

rceil ⎤ U+2309 right ceiling ISOamsc

lfloor ⎣ U+230a left floor = apl downstile ISOamsc

rfloor ⎦ U+230b right floor ISOamsc

lang 〈 U+2329 left-pointing angle bracket = bra ISOtech

rang 〉 U+232a right-pointing angle bracket = ket ISOtech

loz ◊ U+25ca lozenge ISOpub

spades ♠ U+2660 black spade suit ISOpub

clubs ♣ U+2663 black club suit = shamrock ISOpub

hearts ♥ U+2665 black heart suit = valentine ISOpub

diams ♦ U+2666 black diamond suit ISOpub

Element and Attribute reference

In a future version of the documentation this section will contain a cross-referenced list of all the elements and attributes that can be
used in the Report Generator.

For now, the Element and Attribute reference information is online at http://bfo.com/ products/report/docs/tags.

http://bfo.com/products/report/docs/tags

	Introduction
	What is it?
	Features

	Getting Started
	Installation
	Creating PDFs from Applications
	Creating PDFs using the Servlet 2.3 Filter
	Creating PDFs using the Proxy Servlet
	Creating PDFs using a transformer
	Requesting PDF documents via HTTPS

	Creating the XML
	A simple example
	Creating dynamic reports
	The DOCTYPE declaration
	Namespaces: Embedding XML metadata

	Styles
	Stylesheet definitions
	Matching certain types of element
	Classes and ID's
	Descendants, Children and Siblings
	Grouping
	Language and Attribute Selectors

	Applying Stylesheets

	Elements
	Document Structure
	Pagination
	Headers, Footers and Macros
	Displaying the Page number

	Page Sizes

	The Document Head
	Meta-information
	Bookmarks

	Box Model
	Padding, Margins and Borders
	Drawing the Background
	Building on existing PDFs
	Positioning
	Clipping

	Text and Fonts
	Text Elements
	Anonymous Paragraphs
	Displaying inline blocks
	Vertical alignment
	Float Positioning
	Text Attributes
	Fonts
	Built-in fonts
	OpenType and WOFF fonts
	Type 1 fonts

	Tables
	Tables on multiple pages
	Table Layout Algorithms

	Lists
	Images
	Barcodes
	Generic Blocks and Vector Graphics
	Graphs
	Graphs Attributes
	Pie Graphs
	Axes Graphs
	Formatting the axes

	Bar Graphs
	Depth Bar Graphs
	Multi Bar Graphs
	Tower Bar Graphs
	Line Graphs
	Area Graphs

	Colors
	Color Spaces

	Hyperlinks
	Interactive Forms
	JavaScript
	Digital Signatures

	PDF/A and PDF/UA
	Migrating from HTML
	Internationalization
	Known problems, limitations and direction
	Appendices
	Appendix A: Named Colors
	Appendix B: Named Entities
	Appendix C: Element and Attribute Reference

	name:
	address:
	sex: Off
	country: [Cameroon]
	email: Yes
	submit:
	bforeportlinks:
	0:

		2018-06-04T17:51:27+0100

