

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2.viewer2

Class ViewerWidget

	java.lang.Object
	
	org.faceless.pdf2.viewer2.ViewerFeature
	
	org.faceless.pdf2.viewer2.ViewerWidget

	
	Direct Known Subclasses:
	About, Close, Coordinates, FullScreenMode, Info, InvisiblySignDocument, ManageIdentities, NavigationWidget, NetworkSave, Open, OpenSystem, Print, PrintSystem, Quit, RotateClockwise, Save, SaveAs, SearchField, ShowConsole, ToggleViewerWidget, XFA, ZoomIn, ZoomLevel, ZoomOut

public class ViewerWidget
extends ViewerFeature

 A type of ViewerFeature that adds a "widget" to a PDFViewer. Widgets are typically
 buttons on the toolbar, menu items and so on.

 Internals (the old way)

 Prior to 2.13.1, Widgets would need to specify details for a button (by calling
 setButton() and/or a menu item (by calling setMenu()).
 This would create a JButton that would run the
 ActionListener returned by createActionListener() when clicked -
 for most widgets this would simply call action.
 Likewise a JMenuItem would also be created the same way.

 The two component were independent, and had to be enabled or disabled
 independently. Retrieving the components could be done by calling
 getViewer.getNamedCompoment(name), where name was
 ButtonNNN or MenuNNN (NNN being the name
 of the feature).

 If the widget left the documentRequired field to the default value of true,
 then both the button and menu components would be added to a list of JComponents which would have their
 enabled state updated depending on whether the PDFViewer had an active
 document panel. Here's a typical example.

 public class MyWidget extends ViewerWidget {
 public MyWidget() {
 super("MyWidgetName");
 setButton("ToolbarName", "resources/icons/myicon.png", "Tooltip text");
 setMenu("MenuName\tMenuItemName", 'z');
 }
 public void action(ViewerEvent event) {
 DocumentPanel panel = event.getViewer().getActiveDocumntPanel();
 // Run action here
 }
 }

 This approach has proved inflexible as the viewer has grown more capable, in particular since the
 arrival of the permission framework, which implies that features
 are no longer enabled based solely on whether a PDF is available. It is no long recommended
 for new Widgets, although it will continue to work as described above. For new Widgets and those with
 more complex requirements for enablement, we recommend the approach described below.

 Internals (the new way)

 The recommended approach for more complex Widgets is to override createActionListener() to
 return an Action instead of a simple ActionListener. One of both of setButton()
 or setMenu() must still be called to add the action to the toolbar or menu (but any Icon, Name,
 Tooltip or Accelerator key set on the Action will override values specified in these calls).

 This is a much more Swing-like approach: there is one Action shared by the button, menu (or any other
 components you may create that trigger it), and you manage the enabled status of the Action, rather
 than the components. The Action will be disabled by default if the
 documentRequired field is left at the default value of true, but other
 than that you must manage when the Action is enabled by reacting to
 DocumentPanelEvents.
 Here's an example which is functionally identical to the above example.

 public class MyWidget extends ViewerWidget {
 private AbstractAction action;

 public MyWidget() {
 super("MyWidgetName");
 setButton("ToolbarName", "resources/icons/myicon.png", "Tooltip text");
 setMenu("MenuName\tMenuItemName", 'z');
 action = new AbstractAction() {
 public void actionPerformed(ActionEvent event) {
 action(new ViewerEvent(event, getViewer()));
 }
 };
 }
 public ActionListener createActionListener() {
 return action;
 }
 public void action(ViewerEvent event) {
 DocumentPanel panel = event.getViewer().getActiveDocumentPanel();
 // Run action here
 }
 }

 If the action is only to be enabled when a PDF is available and (for example) the Assemble
 permission is set, then you could augment the above code with the
 following.

 public void initialize(final PDFViewer viewer) {
 super.initialize(viewer);
 viewer.addDocumentPanelListener(new DocumentPanelListener() {
 public void documentUpdated(DocumentPanelEvent event) {
 String type = event.getType();
 if (type.equals("activated") || (type.equals("permissionChanged") && event.getDocumentPanel() == viewer.getActiveDocumentPanel())) {
 action.setEnabled(event.getDocumentPanel().hasPermission("Assemble"));
 } else if (type.equals("deactivated")) {
 action.setEnabled(false);
 }
 }
 });
 }

 Of course other designs for this widget are possible, including skipping action()
 and running the code directly from
 Action.actionPerformed(), or having the widget itself implement
 Action and DocumentPanelListener to remove the anonymous inner classes.

 This code is copyright the Big Faceless Organization. You're welcome to use, modify and distribute it in any form in your own projects, provided those projects continue to make use of the Big Faceless PDF library.

	Since:
	2.8
	See Also:
	ToggleViewerWidget

	

	

Field Summary

Fields 	Modifier and Type	Field	Description
	protected WeakPropertyChangeSupport	propertyChangeSupport	

	

Constructor Summary

Constructors 	Constructor	Description
	ViewerWidget(String name)	
Create a new Widget

	

Method Summary

All Methods Instance Methods Concrete Methods 	Modifier and Type	Method	Description
	void	action(ViewerEvent event)	
The method that's run when this feature is activated.

	void	addPropertyChangeListener(PropertyChangeListener listener)	
Add a Listener for changes to this object.

	protected ActionListener	createActionListener()	
Return an ActionListener that will be called when this Widget is activated.

	protected void	firePropertyChange(String name,
 Object oldValue,
 Object newValue)	
Fire a property change event on this object

	JComponent	getComponent()	
Return the component representing this Widget.

	protected ImageIcon	getIcon(String path)	
Return the icon specified by the supplied path, or null if no such icon exists

	PDFViewer	getViewer()	
Get the Viewer this Feature has been added to.

	void	initialize(PDFViewer viewer)	
Called when the feature is first added to a viewer

	boolean	isButtonEnabledByDefault()	
Return true if the button component for this widget is enabled by default.

	boolean	isDocumentRequired()	
Return whether this widget should be inactive if no Document is
 selected.

	boolean	isMenuEnabledByDefault()	
Return true if the menu component for this widget is enabled by default.

	void	removePropertyChangeListener(PropertyChangeListener listener)	
Remove a Listener that was listening to changes on this object

	void	setButton(String toolbar,
 String icon,
 String tooltip)	
Set this feature to use a regular button in the toolbar.

	protected void	setComponent(String toolbar,
 JComponent component)	
Set a custom component to be displayed in the ToolBar for this feature.

	protected void	setDocumentRequired(boolean required)	
Set whether this feature requires a PDF to be loaded.

	void	setMenu(String menu)	
Set a menu item for this feature.

	void	setMenu(String menu,
 char mnemonic)	
Set a menu item for this feature, with an optional keyboard shortcut.

	void	setToolBarEnabled(boolean enabled)	
Set whether the toolbar this feature is stored in is enabled by default

	void	setToolBarEnabledAlways(boolean always)	
Set whether the toolbar this feature is stored in can be enabled or disabled

	void	setToolBarFloatable(boolean floatable)	
Set whether the toolbar this feature is stored in can be floated

	void	setToolBarFloating(boolean floating)	
Set whether this toolbar is always floating or not.

	String	toString()	

	

Methods inherited from class org.faceless.pdf2.viewer2.ViewerFeature

getAllEnabledFeatures, getAllFeatures, getCustomJavaScript, getFeatureProperty, getFeatureURLProperty, getName, isEnabledByDefault, setFeatureName, teardown

	

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

	

	

Field Detail

	
propertyChangeSupport

protected WeakPropertyChangeSupport propertyChangeSupport

	

Constructor Detail

	
ViewerWidget

public ViewerWidget(String name)

Create a new Widget

	

Method Detail

	
toString

public String toString()

	Overrides:
	toString in class ViewerFeature

	
createActionListener

protected ActionListener createActionListener()

Return an ActionListener that will be called when this Widget is activated.
 Subclasses will typically not need to override this method except in special cases.

	Returns:
	ActionListener the ActionListener to be notified when an event fires
	See Also:
	Quit.createActionListener()

	
getIcon

protected ImageIcon getIcon(String path)

Return the icon specified by the supplied path, or null if no such icon exists

	
initialize

public void initialize(PDFViewer viewer)

Description copied from class: ViewerFeature

Called when the feature is first added to a viewer

	Overrides:
	initialize in class ViewerFeature

	
getViewer

public final PDFViewer getViewer()

Get the Viewer this Feature has been added to.

	
setDocumentRequired

protected final void setDocumentRequired(boolean required)

Set whether this feature requires a PDF to be loaded. Most
 features except for the "Open" widget do, so the default is "true"

	
isDocumentRequired

public boolean isDocumentRequired()

Return whether this widget should be inactive if no Document is
 selected.

	Since:
	2.11.7
	See Also:
	setDocumentRequired(boolean)

	
setComponent

protected final void setComponent(String toolbar,
 JComponent component)

Set a custom component to be displayed in the ToolBar for this feature.

	Parameters:
	toolbar - the name of the toolbar to put the component in
	component - the component

	
getComponent

public JComponent getComponent()

Return the component representing this Widget.

	Since:
	2.8.5

	
isButtonEnabledByDefault

public boolean isButtonEnabledByDefault()

Return true if the button component for this widget is enabled by default.
 The default is "true"

	Since:
	2.10.3

	
isMenuEnabledByDefault

public boolean isMenuEnabledByDefault()

Return true if the menu component for this widget is enabled by default.
 The default is "true"

	Since:
	2.10.3

	
setButton

public void setButton(String toolbar,
 String icon,
 String tooltip)

Set this feature to use a regular button in the toolbar. The button will be
 created using the specified icon and with the specified tooltip.

	Parameters:
	toolbar - the name of the toolbar to put the component in
	icon - the URL of the icon to use. If the return value of createActionListener()
 is an Action that specifies an icon already, this will be ignored.
	tooltip - the tooltip to display for this button. If the return value of
 createActionListener() is an Action that specifies a tooltip value already,
 this will be ignored.
	Since:
	2.8, changed from protected to public in 2.17.1

	
setToolBarEnabled

public void setToolBarEnabled(boolean enabled)

Set whether the toolbar this feature is stored in is enabled by default

	Since:
	2.8, changed from protected to public in 2.17.1

	
setToolBarEnabledAlways

public void setToolBarEnabledAlways(boolean always)

Set whether the toolbar this feature is stored in can be enabled or disabled

	Since:
	2.8, changed from protected to public in 2.17.1
	See Also:
	ToolbarDisabling

	
setToolBarFloatable

public void setToolBarFloatable(boolean floatable)

Set whether the toolbar this feature is stored in can be floated

	Since:
	2.8, changed from protected to public in 2.17.1

	
setToolBarFloating

public void setToolBarFloating(boolean floating)

Set whether this toolbar is always floating or not. Toolbars with this set
 are implemented as JInternalFrame objects, and are never attached to the
 regular tool bar

	Since:
	2.8.3, changed from protected to public in 2.17.1

	
setMenu

public void setMenu(String menu)

Set a menu item for this feature. Activating the menu item is the
 same as pressing the button.

	Parameters:
	menu - the menu hierarchy to use, separated with tabs - eg "File\tOpen".
 If the return value of createActionListener() is an Action that
 specifies a Name already, the last part of this menu will be ignored and that name used instead.
	Since:
	2.8, changed from protected to public in 2.17.1

	
setMenu

public void setMenu(String menu,
 char mnemonic)

Set a menu item for this feature, with an optional keyboard shortcut.

	Parameters:
	menu - the menu hierarchy to use, separated with tabs - eg "File\tOpen".
 If the return value of createActionListener() is an Action that
 specifies a Name already, the last part of this menu will be ignored and that name used instead.
	mnemonic - the keyboard shortcut to activate the menu - a lowercase or uppercase
 character to activate the menu.
 If the return value of createActionListener() is an Action that
 specifies an Accelerator key already, this will be ignored.
	Since:
	2.10.2, changed from protected to public in 2.17.1

	
action

public void action(ViewerEvent event)

The method that's run when this feature is activated. This method is called by the
 ActionListener returned by the default implementation of
 createActionListener(), and by default is a no-op.

	
addPropertyChangeListener

public void addPropertyChangeListener(PropertyChangeListener listener)

Add a Listener for changes to this object.
 By default only the "enabled" property change is fired when the widget's
 action is enabled or disabled; subclasses may expand on this list.
 Duplicate PropertyChangeListeners are ignored and listeners are held in
 this class with a weak-reference and so will be removed automatically on
 garbage collection.

	Parameters:
	listener - the Listener.
	Since:
	2.24.2

	
removePropertyChangeListener

public void removePropertyChangeListener(PropertyChangeListener listener)

Remove a Listener that was listening to changes on this object

	Parameters:
	listener - a listener previously added in addPropertyChangeListener(java.beans.PropertyChangeListener)
	Since:
	2.24.2

	
firePropertyChange

protected void firePropertyChange(String name,
 Object oldValue,
 Object newValue)

Fire a property change event on this object

	Since:
	2.24.2

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2024 Big Faceless Organization

