

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class PublicKeyEncryptionHandler

	java.lang.Object
	
	org.faceless.pdf2.EncryptionHandler
	
	org.faceless.pdf2.PublicKeyEncryptionHandler

	
	All Implemented Interfaces:
	Cloneable

	Direct Known Subclasses:
	PublicKeyPromptEncryptionHandler

public class PublicKeyEncryptionHandler
extends EncryptionHandler

 The PublicKeyEncryptionHandler can be used to encrypt and decrypt documents using public/private
 key Encryption, so documents can only be opened by certain individuals. It requires Java 1.4 or
 later, as it uses the javax.crypto package. The resulting documents can be opened
 in Acrobat 5 or later with the appropriate private key.

 We're going to assume you're familiar with public key cryptography if you're using this class, and
 instead jump straight in and give a couple of examples showing how to decrypt and encrypt a document.
 First, some important notes:

 	This handler only works with Java 1.4 or above
	You must download and install the unrestricted policy files for the Sun JCE. You can download
 these from the same place you download Java - for Suns current 1.4.2 release, they are available
 at http://java.sun.com/j2se/1.4.2/download.html.
 If they're not installed, you'll see an exception like:
 java.lang.SecurityException: Unsupported keysize or algorithm parameters

	
 You will need a JCE provider that implements the ciphers you need. Any JCE provider should work,
 including the default Sun JCE provider and the Bouncy Castle provider (available at
 http://www.bouncycastle.org).

 Once these steps are done, to encrypt a document you need the X.509 certificate of the person
 you're sending it to. Typically you'd get this from a KeyStore, as in this example:

 KeyStore keystore = KeyStore.getInstance("PKCS12");
 keystore.load(new FileInputStream("keystore.p12"), "password".toCharArray());
 X509Certificate cert = (X509Certificate)keystore.getCertificate("john");

 PublicKeyEncryptionHandler handler = new PublicKeyEncryptionHandler(5);
 handler.addRecipient(cert, StandardEncryptionHandler.PRINT_HIGHRES,
 StandardEncryptionHandler.CHANGE_ALL,
 StandardEncryptionHandler.EXTRACT_ALL);

 pdf.setEncryptionHandler(handler);

 Other ways to get a certificate include using the FormSignature.loadPKCS7KeyStore(java.io.InputStream)
 method to load your X.509 certificates from a PKCS#7 object, or the CertificateFactory
 class to load the certificate from .cer files exported by Acrobat:

 FileInputStream fis = new FileInputStream("certificate.cer");
 CertificateFactory cf = CertificateFactory.getInstance("X.509");
 X509Certificate cert = (X509Certificate)cf.generateCertificate(fis);

 To decrypt a document, you will need a KeyStore containing a private key that matches the
 public key used to encrypt the document. Typically this will be done like so:

 KeyStore keystore = KeyStore.getInstance("PKCS12");
 keystore.load(new FileInputStream("keystore.p12"), "storepassword".toCharArray());
 EncryptionHandler handler = new PublicKeyEncryptionHandler(keystore,
 null,
 "keypassword".toCharArray());

 PDF pdf = new PDF(new PDFReader(new File("encrypted.pdf"), handler));

	Since:
	2.2.5
	See Also:
	FormSignature,
PDFReader(InputStream,EncryptionHandler),
StandardEncryptionHandler

	

	

Constructor Summary

Constructors 	Constructor	Description
	PublicKeyEncryptionHandler()	
Create a new PublicKeyEncryptionHandler for decrypting a document encrypted with
 the Adobe.PubSec public key encryption handler.

	PublicKeyEncryptionHandler(int acrobatversion)	
Create a new PublicKeyEncryptionHandler for encrypting a document.

	PublicKeyEncryptionHandler(KeyStore keystore,
 String alias,
 char[] password)	
Create a new PublicKeyEncryptionHandler for decrypting a document encrypted with
 the Adobe.PubSec public key encryption handler.

	

Method Summary

All Methods Instance Methods Concrete Methods 	Modifier and Type	Method	Description
	void	addRecipient(X509Certificate recipient,
 int print,
 int extraction,
 int change)	
Add a recipient to the list of people that can open the document

	protected boolean	chooseRecipient(X500Principal[] issuers,
 BigInteger[] serials)	
This method is called by prepareToDecrypt() to give an implementation
 the chance to select an appropriate entry from the KeyStore if it hasn't
 already been done.

	void	finishedDecrypt()	
This method is called after the PDF has been read.

	void	finishedEncrypt()	
This method is called after the PDF has been written.

	int	getChange()	
Return the value of the "Change" flags.

	InputStream	getDecryptionStream(InputStream in,
 int num,
 int gen)	
Return a FilterInputStream that will decrypt anything read
 from it.

	String	getDescription()	
Return a textual description of the encryption used

	int	getEncryptedStreamLength(int len)	
Return the length that a stream of the specified length would be after encryption.

	OutputStream	getEncryptionStream(OutputStream out,
 int num,
 int gen)	
Return a FilterOutputStream that will encrypt anything written
 to it.

	int	getExtract()	
Return the value of the "Extract" flags.

	String	getFilterName()	
Return the name of the "Filter" field in the Encryption dictionary.

	int	getPrint()	
Return the value of the "Print" flags.

	String	getSubFilterName()	
Return the name of the "Subfilter" field in the Encryption dictionary.

	boolean	hasRight(String right)	
Returns true if the EncryptionHandler wil grant the specified right to the
 PDF library.

	boolean	isMetadataEncrypted()	
This method returns true if XMP MetaData should be stored encrypted, or false
 otherwise.

	boolean	isRequired()	
This method should return true if the document needs to be encrypted.

	void	prepareToDecrypt()	
This method is called just before the PDF is read in.

	void	prepareToEncrypt()	
This method is called when the PDF is about to be written out.

	void	setDecryptionKey(KeyStore keystore,
 String alias,
 char[] password)	
Set the private key to use to decrypt the document

	void	setEncryptedMetadata(boolean encrypt)	
Set whether XMP Metadata is to be encrypted or not.

	

Methods inherited from class org.faceless.pdf2.EncryptionHandler

clone, containsKey, getArrayValueSize, getBooleanValue, getDecryptedStreamLength, getDictionaryValueKeys, getFileId, getIntegerValue, getNameValue, getNumericValue, getStringValue, getTextStringValue, isChanged, isEmbeddedFileEncrypted, isStreamEncrypted, isStringEncrypted, markChanged, putArrayValue, putBooleanValue, putDictionaryValue, putNameValue, putNumericValue, putStringValue, putTextStringValue, setFileId

	

Methods inherited from class java.lang.Object

equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

	

	

Constructor Detail

	
PublicKeyEncryptionHandler

public PublicKeyEncryptionHandler()

Create a new PublicKeyEncryptionHandler for decrypting a document encrypted with
 the Adobe.PubSec public key encryption handler. This constructor must
 be followed by a call to setDecryptionKey().

	Since:
	2.8.2

	
PublicKeyEncryptionHandler

public PublicKeyEncryptionHandler(KeyStore keystore,
 String alias,
 char[] password)
 throws GeneralSecurityException

Create a new PublicKeyEncryptionHandler for decrypting a document encrypted with
 the Adobe.PubSec public key encryption handler.

	Parameters:
	keystore - the KeyStore containing the private key to decrypt the document with
	alias - the alias of the key to use, or null to use the first key that fits
	password - the password to decrypt the private key, or null if no password is required
	Throws:
	GeneralSecurityException
	Since:
	2.2.5

	
PublicKeyEncryptionHandler

public PublicKeyEncryptionHandler(int acrobatversion)

Create a new PublicKeyEncryptionHandler for encrypting a document. Recipients can
 be added using the addRecipient() method. The version number specifies
 the minimum release of Acrobat required to open the document - valid values are from 5 to 8,
 to target Acrobat 5.0 to 8.0 respectively. Targetting Acrobat 7.0 or above will result in the
 AES cipher being used if it's available. Targetting earlier version will use the RC4 cipher.

	Parameters:
	acrobatversion - the version of Acrobat that is being targeted. Must be between 5 and 8.
	Since:
	2.2.5

	

Method Detail

	
setEncryptedMetadata

public void setEncryptedMetadata(boolean encrypt)

Set whether XMP Metadata is to be encrypted or not. Unencrypted Metadata
 is supported by Acrobat 6.0 and later.

	Parameters:
	encrypt - whether to encrypt the XMP Metadata when saving the file.
	Since:
	2.8.2

	
setDecryptionKey

public void setDecryptionKey(KeyStore keystore,
 String alias,
 char[] password)
 throws GeneralSecurityException

Set the private key to use to decrypt the document

	Parameters:
	keystore - the KeyStore containing the private key to decrypt the document with
	alias - the alias of the key to use, or null to use the first key that fits
	password - the password to decrypt the private key, or null if no password is required
	Throws:
	GeneralSecurityException
	Since:
	2.8.2

	
addRecipient

public void addRecipient(X509Certificate recipient,
 int print,
 int extraction,
 int change)

Add a recipient to the list of people that can open the document

	Parameters:
	recipient - the X.509 certificate of the recipient
	print - one of StandardEncryptionHandler.PRINT_NONE StandardEncryptionHandler.PRINT_LOWRES StandardEncryptionHandler.PRINT_HIGHRES
	extraction - one of StandardEncryptionHandler.EXTRACT_NONE StandardEncryptionHandler.EXTRACT_ACCESSIBILITY StandardEncryptionHandler.EXTRACT_ALL
	change - one of StandardEncryptionHandler.CHANGE_NONE StandardEncryptionHandler.CHANGE_LAYOUT StandardEncryptionHandler.CHANGE_FORMS StandardEncryptionHandler.CHANGE_ANNOTATIONS StandardEncryptionHandler.CHANGE_ALL
	Since:
	2.2.5

	
getChange

public int getChange()

Return the value of the "Change" flags.
 Only valid after decrypting a document.

	Returns:
	one of StandardEncryptionHandler.CHANGE_NONE StandardEncryptionHandler.CHANGE_LAYOUT StandardEncryptionHandler.CHANGE_FORMS StandardEncryptionHandler.CHANGE_ANNOTATIONS or StandardEncryptionHandler.CHANGE_ALL
	Since:
	2.6.5

	
getExtract

public int getExtract()

Return the value of the "Extract" flags.
 Only valid after decrypting a document.

	Returns:
	one of StandardEncryptionHandler.EXTRACT_NONE StandardEncryptionHandler.EXTRACT_ACCESSIBILITY StandardEncryptionHandler.EXTRACT_ALL
	Since:
	2.6.5

	
getPrint

public int getPrint()

Return the value of the "Print" flags.
 Only valid after decrypting a document.

	Returns:
	one of StandardEncryptionHandler.PRINT_NONE StandardEncryptionHandler.PRINT_LOWRES StandardEncryptionHandler.PRINT_HIGHRES
	Since:
	2.6.5

	
hasRight

public boolean hasRight(String right)

Description copied from class: EncryptionHandler

Returns true if the EncryptionHandler wil grant the specified right to the
 PDF library. The default implementation of this method returns true, but
 subclasses will override this method based on the rights applied to the
 document. This method should always return super.hasRight()
 if it doesn't recognise the value of "right"

	Overrides:
	hasRight in class EncryptionHandler
	Parameters:
	right - an interned() String defining the usage right the PDF library
 is querying.

	
getFilterName

public String getFilterName()

Description copied from class: EncryptionHandler

Return the name of the "Filter" field in the Encryption dictionary. This is used to
 determine whether an appropriate filter has been supplied by the decryption process. For
 example, the StandardEncryptionHandler class returns "Standard" from this method.

	Specified by:
	getFilterName in class EncryptionHandler

	
getSubFilterName

public String getSubFilterName()

Description copied from class: EncryptionHandler

Return the name of the "Subfilter" field in the Encryption dictionary. This is used to
 determine whether an appropriate filter has been supplied by the decryption process. As
 "Subfilter" is an optional field, this method may return null.

	Specified by:
	getSubFilterName in class EncryptionHandler

	
getDescription

public String getDescription()

Return a textual description of the encryption used

	Since:
	2.8.2

	
isRequired

public boolean isRequired()

Description copied from class: EncryptionHandler

This method should return true if the document needs to be encrypted.
 For example, the StandardEncryptionHandler returns false here
 if and only if no passwords are set and the document is set to allow full access.

	Specified by:
	isRequired in class EncryptionHandler

	
isMetadataEncrypted

public boolean isMetadataEncrypted()

Description copied from class: EncryptionHandler

This method returns true if XMP MetaData should be stored encrypted, or false
 otherwise. The default implementation returns true, subclasses should override
 as necessary.

	Overrides:
	isMetadataEncrypted in class EncryptionHandler

	
getEncryptedStreamLength

public int getEncryptedStreamLength(int len)

Description copied from class: EncryptionHandler

Return the length that a stream of the specified length would be after encryption. Generally
 this will be the same same as the input length (and that's what this method returns, unless
 overridden), but for some Encryption algorithms like AES, the size may be rounded up to
 the nearest block size.

	Overrides:
	getEncryptedStreamLength in class EncryptionHandler

	
getEncryptionStream

public OutputStream getEncryptionStream(OutputStream out,
 int num,
 int gen)

Description copied from class: EncryptionHandler

Return a FilterOutputStream that will encrypt anything written
 to it. The encryption parameters are set in EncryptionHandler.prepareToEncrypt(),
 which is called once at the start of the render.

	Specified by:
	getEncryptionStream in class EncryptionHandler
	Parameters:
	out - the OuptutStream that should be written to
	num - the object number of the top-level object
	gen - the generation number of the top-level object

	
getDecryptionStream

public InputStream getDecryptionStream(InputStream in,
 int num,
 int gen)

Description copied from class: EncryptionHandler

Return a FilterInputStream that will decrypt anything read
 from it. The decryption parameters are set in EncryptionHandler.prepareToDecrypt(),
 which is called once at the start of the PDF read.

	Specified by:
	getDecryptionStream in class EncryptionHandler
	Parameters:
	in - the InputStream that should be read from
	num - the object number of the top-level object
	gen - the generation number of the top-level object

	
prepareToDecrypt

public void prepareToDecrypt()
 throws IOException

Description copied from class: EncryptionHandler

This method is called just before the PDF is read in. It is expected that this method will
 read various parameters from the Encrypt dictionary by way of the various get...
 methods, and use them and the value of EncryptionHandler.getFileId() to set its internal state so that
 it's ready to start decryption. It may throw an IOException if these parameters
 are invalid, in which case the document cannot be read.

	Specified by:
	prepareToDecrypt in class EncryptionHandler
	Throws:
	IOException

	
chooseRecipient

protected boolean chooseRecipient(X500Principal[] issuers,
 BigInteger[] serials)

This method is called by prepareToDecrypt() to give an implementation
 the chance to select an appropriate entry from the KeyStore if it hasn't
 already been done. The supplied arrays are equal length and indicate
 the Issuer and SerialNumber of all the recipients that can decrypt this
 document. By default this method does nothing.

	Parameters:
	issuers - an array listing all the X.509 Certificate Issuers
	serials - an array listing all the X.509 Certificate Serial Numbers.
	Returns:
	true if the decryption should continue, false otherwise
	Since:
	2.8.3

	
prepareToEncrypt

public void prepareToEncrypt()
 throws IOException

Description copied from class: EncryptionHandler

This method is called when the PDF is about to be written out. It is expected that this
 method will write various parameters which have been set by the user to the Encrypt dictionary
 (including the "Filter" field) by way of the various put... methods, and will use
 these and the value of EncryptionHandler.getFileId() to set its internal state so that it's ready to
 start encryption. It may throw an IOException if these parameters are in any
 way invalid, in which case the document cannot be written.

	Specified by:
	prepareToEncrypt in class EncryptionHandler
	Throws:
	IOException

	
finishedEncrypt

public void finishedEncrypt()

Description copied from class: EncryptionHandler

This method is called after the PDF has been written. It may be used to clean
 up any internal state that needs to be cleaned.

	Specified by:
	finishedEncrypt in class EncryptionHandler

	
finishedDecrypt

public void finishedDecrypt()

Description copied from class: EncryptionHandler

This method is called after the PDF has been read. It may be used to clean up any internal
 state that needs to be cleaned.

	Specified by:
	finishedDecrypt in class EncryptionHandler

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2024 Big Faceless Organization

