

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class PagePainter

	java.lang.Object
	
	org.faceless.pdf2.PagePainter

	
	All Implemented Interfaces:
	Printable

public class PagePainter
extends Object
implements Printable

The PagePainter class renders a page of a PDF to a Graphics2D object -
 typically to a bitmap image or a printer. At it's simplest it can be used to
 convert a page to a BufferedImage like so

 PDFParser parser = new PDFParser(pdf);
 PagePainter painter = parser.getPagePainter(0);
 BufferedImage image = painter.getImage(100);

 As it implements the Printable interface it can also be used for printing -
 for example, to print the first page of a document you could do something like this:

 PDFParser parser = new PDFParser(pdf);
 PagePainter painter = parser.getPagePainter(0);

 PrintRequestAttributeSet printAttributes = new HashPrintRequestAttributeSet();
 printAttributes.add(OrientationRequested.PORTRAIT);
 MediaPrintableArea area = new MediaPrintableArea(0, 0, 210, 296, MediaPrintableArea.MM);
 printAttributes.add(area);
 PrinterJob job = PrinterJob.getPrinterJob();

 PrinterJob job = PrinterJob.getPrinterJob();
 job.setPrintable(painter);
 job.print(painter, printAttributes);

	Since:
	2.5

	

	

Field Summary

Fields 	Modifier and Type	Field	Description
	static RenderingHints.Key	KEY_COLORCONVERTRGB	
A RenderingHints.Key which tells the rendering process to convert all colors
 to RGB.

	static RenderingHints.Key	KEY_SHAPETEXT	
A RenderingHints.Key which determines whether text is rendered as a Shape.

	static RenderingHints.Key	KEY_SHAPETEXT_FONT	
A RenderingHints.Key which allow text that is rendered as a shape to be
 assocated with a glyph.

	static RenderingHints.Key	KEY_SHAPETEXT_STRING	
A RenderingHints.Key which allow text that is rendered as a shape to be
 assocated with a glyph.

	static RenderingHints.Key	KEY_SOFTCLIP	
A RenderingHints.Key which determines whether shapes are "soft-clipped"
 when rendering.

	static Object	VALUE_COLORCONVERTRGB_DEFAULT	
A Rendering Hint value for KEY_COLORCONVERTRGB which causes the rendering process
 to convert colors to RGB only when it's deemed necessary.

	static Object	VALUE_COLORCONVERTRGB_OFF	
A Rendering Hint value for KEY_COLORCONVERTRGB which causes the rendering process
 to never convert colors to RGB.

	static Object	VALUE_COLORCONVERTRGB_ON	
A Rendering Hint value for KEY_COLORCONVERTRGB which causes the rendering process
 to always convert colors to RGB.

	static Object	VALUE_SHAPETEXT_DEFAULT	
A Rendering Hint value for KEY_SHAPETEXT which causes the rendering process
 to never draw text as shapes.

	static Object	VALUE_SHAPETEXT_OFF	
A Rendering Hint value for KEY_SHAPETEXT which causes the rendering process
 to draw text as shapes where we think the benefits outweigh the costs.

	static Object	VALUE_SHAPETEXT_ON	
A Rendering Hint value for KEY_SHAPETEXT which causes the rendering process
 to always draw text as shapes.

	static Object	VALUE_SOFTCLIP_DEFAULT	
A Rendering Hint value for KEY_SOFTCLIP which causes the rendering process
 to do what it feels is best

	static Object	VALUE_SOFTCLIP_OFF	
A Rendering Hint value for KEY_SOFTCLIP which causes the rendering process
 to clip normally.

	static Object	VALUE_SOFTCLIP_ON	
A Rendering Hint value for KEY_SOFTCLIP which causes the rendering process
 to use a moderately complex hack for clipping, to work around limitations in the
 AWT rendering model.

	

Fields inherited from interface java.awt.print.Printable

NO_SUCH_PAGE, PAGE_EXISTS

	

Method Summary

All Methods Instance Methods Concrete Methods 	Modifier and Type	Method	Description
	boolean	drawSubImage(Graphics2D graphics,
 double x1,
 double y1,
 double x2,
 double y2,
 float dpi)	
Draw an area of a page onto a Graphics2D object.

	Composite	getAnnotationComposite()	
Return the Composite that should be used to place the
 annotation painted by paintAnnotation()
 onto the main page.

	BufferedImage	getImage(float dpi)	
Draw the area inside the ViewBox if specified, or the whole page if not
 to a BufferedImage in the standard sRGB ColorModel.

	BufferedImage	getImage(float dpi,
 ColorModel cm)	
Draw the area inside the ViewBox if specified, or the whole page if not
 to a BufferedImage in the specified ColorModel.

	PDFPage	getPage()	
Return the PDFPage being painted by this object

	BufferedImage	getSubImage(double x1,
 double y1,
 double x2,
 double y2,
 float dpi)	
Draw a section of the page to a BufferedImage in the standard sRGB ColorModel

	BufferedImage	getSubImage(double x1,
 double y1,
 double x2,
 double y2,
 float dpi,
 ColorModel cm)	
Draw a section of the page to a BufferedImage using the specified ColorModel

	void	interrupt()	
Interrupts and stops the current painting operation.

	boolean	isPainting()	
Returns true if the current painting operation is
 still in progress.

	boolean	paintAnnotation(PDFAnnotation annotation,
 String state,
 Graphics2D graphics,
 float[] rect)	
Paint a single annotation.

	int	print(Graphics g,
 PageFormat format,
 int pagenum)	
	void	setBackground(Paint background)	
Set the background of any images drawn with this PagePainter.

	void	setBox(String boxname)	
Set the default "box" to paint.

	void	setPageExtractor(PageExtractor extractor)	
Set the PageExtractor to extract text to.

	void	setPaintAnnotations(boolean paintannotations)	
Set whether any annotations on this page are to be painted or not.

	void	setRenderingHints(RenderingHints hints)	

 Set additional rendering hints on the Graphics object.

	

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

	

	

Field Detail

	
KEY_COLORCONVERTRGB

public static final RenderingHints.Key KEY_COLORCONVERTRGB

A RenderingHints.Key which tells the rendering process to convert all colors
 to RGB. This is required when printing due to bugs in the sun.print package
 up to Java 1.6.

	Since:
	2.6.3
	See Also:
	setRenderingHints(java.awt.RenderingHints)

	
VALUE_COLORCONVERTRGB_DEFAULT

public static final Object VALUE_COLORCONVERTRGB_DEFAULT

A Rendering Hint value for KEY_COLORCONVERTRGB which causes the rendering process
 to convert colors to RGB only when it's deemed necessary.

	Since:
	2.6.3

	
VALUE_COLORCONVERTRGB_ON

public static final Object VALUE_COLORCONVERTRGB_ON

A Rendering Hint value for KEY_COLORCONVERTRGB which causes the rendering process
 to always convert colors to RGB.

	Since:
	2.6.3

	
VALUE_COLORCONVERTRGB_OFF

public static final Object VALUE_COLORCONVERTRGB_OFF

A Rendering Hint value for KEY_COLORCONVERTRGB which causes the rendering process
 to never convert colors to RGB.

	Since:
	2.6.3

	
KEY_SHAPETEXT

public static final RenderingHints.Key KEY_SHAPETEXT

A RenderingHints.Key which determines whether text is rendered as a Shape.
 Rendering text as shapes gives higher quality glyphs at low DPI, but tends to take
 about twice as long to draw. When drawing to Graphics2D object that is PostScript
 based, rendering text as shapes gives no benefit at all but results in much bigger
 PostScript output files. Generally you want this on for low-DPI bitmap images, and
 off for printing, which is what the VALUE_SHAPETEXT_DEFAULT value does.

	Since:
	2.6.3
	See Also:
	setRenderingHints(java.awt.RenderingHints)

	
VALUE_SHAPETEXT_OFF

public static final Object VALUE_SHAPETEXT_OFF

A Rendering Hint value for KEY_SHAPETEXT which causes the rendering process
 to draw text as shapes where we think the benefits outweigh the costs.

	Since:
	2.6.3

	
VALUE_SHAPETEXT_ON

public static final Object VALUE_SHAPETEXT_ON

A Rendering Hint value for KEY_SHAPETEXT which causes the rendering process
 to always draw text as shapes.

	Since:
	2.6.3

	
VALUE_SHAPETEXT_DEFAULT

public static final Object VALUE_SHAPETEXT_DEFAULT

A Rendering Hint value for KEY_SHAPETEXT which causes the rendering process
 to never draw text as shapes.

	Since:
	2.6.3

	
KEY_SOFTCLIP

public static final RenderingHints.Key KEY_SOFTCLIP

A RenderingHints.Key which determines whether shapes are "soft-clipped"
 when rendering. This is a hack which gives better results when rendering to the AWT,
 but it requires an intermediate buffer so is a little more expensive in terms of time.
 It is also not appropriate to use when rendering to any other soft of graphics other
 than the AWT (for example, when printing).
 Generally you want this on for rendering to a bitmap through the AWT, off otherwise, which
 is what the VALUE_SOFTCLIP_DEFAULT value does.

	Since:
	2.19.1

	
VALUE_SOFTCLIP_ON

public static final Object VALUE_SOFTCLIP_ON

A Rendering Hint value for KEY_SOFTCLIP which causes the rendering process
 to use a moderately complex hack for clipping, to work around limitations in the
 AWT rendering model. This is good for rendering to AWT, bad for anything else.

	Since:
	2.19.1

	
VALUE_SOFTCLIP_OFF

public static final Object VALUE_SOFTCLIP_OFF

A Rendering Hint value for KEY_SOFTCLIP which causes the rendering process
 to clip normally.

	Since:
	2.19.1

	
VALUE_SOFTCLIP_DEFAULT

public static final Object VALUE_SOFTCLIP_DEFAULT

A Rendering Hint value for KEY_SOFTCLIP which causes the rendering process
 to do what it feels is best

	Since:
	2.19.1

	
KEY_SHAPETEXT_FONT

public static final RenderingHints.Key KEY_SHAPETEXT_FONT

A RenderingHints.Key which allow text that is rendered as a shape to be
 assocated with a glyph. Primarily of use to those implementing their own Graphics2D
 object, the value of this key will be the PDFFont that is currently in use

	Since:
	2.17.1

	
KEY_SHAPETEXT_STRING

public static final RenderingHints.Key KEY_SHAPETEXT_STRING

A RenderingHints.Key which allow text that is rendered as a shape to be
 assocated with a glyph. Primarily of use to those implementing their own Graphics2D
 object, the value of this key will be the text that the next graphics operations represent,
 or null if future graphics operations are not part of a glyph.
 Note that the PDF and AWT rendering models have differences, so this is not necessarily
 exact - for example, setting the clipping path to the outline of a glyph is classed as text

	Since:
	2.17.1

	

Method Detail

	
setBox

public void setBox(String boxname)

Set the default "box" to paint. By default this is the CropBox if specified, otherwise
 the MediaBox will be used. Setting this to "TrimBox", "ArtBox", "MediaBox" or any of
 the other boxes from the PDFPage.getBox(java.lang.String) method will change this behaviour. If the
 requested box is not set for the page, it will fall back to the default behaviour.

	Parameters:
	boxname - the name of the page box to render by default - "CropBox", "MediaBox", "ArtBox" or "TrimBox"
	Since:
	2.11.22

	
setBackground

public void setBackground(Paint background)

Set the background of any images drawn with this PagePainter. By default
 pages are drawn onto an opaque white background, but this method may be used to cause
 PDFs to be drawn onto a different background. A value of null will cause
 the page to be drawn onto a transparent background.

	Parameters:
	background - The background paint to draw the page on to. May be null.
	Since:
	2.5.2

	
setPaintAnnotations

public void setPaintAnnotations(boolean paintannotations)

Set whether any annotations on this page are to be painted or not.
 The default is true.

	Since:
	2.8

	
getPage

public PDFPage getPage()

Return the PDFPage being painted by this object

	Since:
	2.11.7

	
setPageExtractor

public void setPageExtractor(PageExtractor extractor)

Set the PageExtractor to extract text to. Setting an extractor in
 this way causes the page to be painted and the text to be extracted in the
 same paint run, rather than having to perform two different runs. It's
 intended for use when a viewing application is going to highlight or select
 text

	Since:
	2.8

	
setRenderingHints

public void setRenderingHints(RenderingHints hints)

 Set additional rendering hints on the Graphics object. When rendering a PDF to a
 BufferedImage using one of the various getImage(float) methods, this method
 can be called first to control the subtleties of the rendering process. Any hints
 that are set in the supplied hints variable are merged with the default
 hints of the Graphics2D the PDF is drawn to.

 For example, if you're quite sure you never want text drawn as shapes, you could do
 something like the following:

 RenderingHints hints = new RenderingHints(PagePainter.KEY_SHAPETEXT, PagePainter.VALUES_SHAPETEXT_OFF);
 pagepainter.setRenderingHints(hints);
 BufferedImage image = pagepainter.getImage();

	Since:
	2.6.3
	See Also:
	Graphics2D.setRenderingHints(java.util.Map<?, ?>),
PDFParser.writeAsTIFF(OutputStream,int,ColorModel,RenderingHints),
KEY_SHAPETEXT,
KEY_COLORCONVERTRGB

	
getImage

public BufferedImage getImage(float dpi)

Draw the area inside the ViewBox if specified, or the whole page if not
 to a BufferedImage in the standard sRGB ColorModel.

	Parameters:
	dpi - how many dots per inch to draw the image. A value of 72 gives in 1 point per pixel
	Returns:
	a BufferedImage that is width*dpi/72 pixels wide and
 height*dpi/72 pixels high, in the ColorModel returned by ColorModel.getRGBdefault()

	
getImage

public BufferedImage getImage(float dpi,
 ColorModel cm)

Draw the area inside the ViewBox if specified, or the whole page if not
 to a BufferedImage in the specified ColorModel.

	Parameters:
	dpi - how many dots per inch to draw the image. A value of 72 gives 1 point per pixel
	cm - the ColorModel to use to create the image with
	Returns:
	a BufferedImage that is width*dpi/72 pixels wide and
 height*dpi/72 pixels high using the specified ColorModel
	See Also:
	PDFParser.BLACKANDWHITE,
PDFParser.GRAYSCALE,
PDFParser.RGB,
PDFParser.RGBA,
PDFParser.CMYK

	
getSubImage

public BufferedImage getSubImage(double x1,
 double y1,
 double x2,
 double y2,
 float dpi)

Draw a section of the page to a BufferedImage in the standard sRGB ColorModel

	Parameters:
	x1 - the left-most X co-ordinate of the area of the page to draw, in points
	y1 - the bottom-most Y co-ordinate of the area of the page to draw, in points
	x2 - the right-most X co-ordinate of the area of the page to draw, in points
	y2 - the top-most Y co-ordinate of the area of the page to draw, in points
	dpi - how many dots per inch to draw the image. A value of 72 gives in 1 point per pixel
	Returns:
	a BufferedImage that is (x2-x1)*dpi/72 pixels wide and
 (y2-y1)*dpi/72 pixels high, in the ColorModel returned by ColorModel.getRGBdefault()

	
getSubImage

public BufferedImage getSubImage(double x1,
 double y1,
 double x2,
 double y2,
 float dpi,
 ColorModel cm)

Draw a section of the page to a BufferedImage using the specified ColorModel

	Parameters:
	x1 - the left-most X co-ordinate of the area of the page to draw, in points
	y1 - the bottom-most Y co-ordinate of the area of the page to draw, in points
	x2 - the right-most X co-ordinate of the area of the page to draw, in points
	y2 - the top-most Y co-ordinate of the area of the page to draw, in points
	dpi - how many dots per inch to draw the image. A value of 72 gives in 1 point per pixel
	cm - the ColorModel to use to create the image with
	Returns:
	a BufferedImage that is (x2-x1)*dpi/72 pixels wide and
 (y2-y1)*dpi/72 pixels high in the specified ColorModel, or null if this thread was interrupted before the image could be completed.

	
drawSubImage

public boolean drawSubImage(Graphics2D graphics,
 double x1,
 double y1,
 double x2,
 double y2,
 float dpi)

Draw an area of a page onto a Graphics2D object. If the setRenderingHints(java.awt.RenderingHints)
 method has been called, those hints will override the equivalent hints on the
 supplied graphics object.

	Parameters:
	x1 - the left-most X co-ordinate of the area of the page to draw, in points
	y1 - the top-most Y co-ordinate of the area of the page to draw, in points
	x2 - the right-most X co-ordinate of the area of the page to draw, in points
	y2 - the bottom-most Y co-ordinate of the area of the page to draw, in points
	dpi - since 2.16 this parameter is ignored - the DPI is derived from the transform on the supplied Graphics2D
	Returns:
	true if the image rendering process completed, false otherwise

	
print

public int print(Graphics g,
 PageFormat format,
 int pagenum)

	Specified by:
	print in interface Printable

	
paintAnnotation

public boolean paintAnnotation(PDFAnnotation annotation,
 String state,
 Graphics2D graphics,
 float[] rect)

Paint a single annotation.

	Parameters:
	annotation - the Annotation
	state - the state to paint - "N" for normal, "D" for down or "R" for rollover
	graphics - the Graphics object to paint to
	rect - the position on the Graphics object - either annotation.getRectangle() or something else.
	Returns:
	true if the annotation painting completed, false if this thread was interrupted or no stream exists for that state
	Since:
	2.8

	
getAnnotationComposite

public Composite getAnnotationComposite()

Return the Composite that should be used to place the
 annotation painted by paintAnnotation()
 onto the main page. Do not rely on this method, it's subject to
 change.

	Since:
	2.11.5

	
interrupt

public void interrupt()

Interrupts and stops the current painting operation.
 This method would typically be called in interactive applications that
 render the PDF in one thread, while allowing user interaction in another.

 If that rendering process needs to be stopped for any reason
 (the user changes the zoom level, for example), this method
 must be called - it will cause the getImage
 method to exit early. If the painting thread is simply killed while
 isPainting() is still running, resources that are shared
 across the PDF may be left in an undefined state, which would cause
 any future page draws to fail.

	
isPainting

public boolean isPainting()

Returns true if the current painting operation is
 still in progress. If it is, the interrupt method must be called
 to stop it before the painting thread is killed.

	Returns:
	true if this object is still rendering the PDF

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2024 Big Faceless Organization

