

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Interface PKCS7SignatureHandler.SigningEngine

	
	Enclosing class:
	PKCS7SignatureHandler

public static interface PKCS7SignatureHandler.SigningEngine

This interface defines the engine used to actually sign a PDF.
 The AcrobatSignatureHandlerFactory.createSigningEngine(java.security.KeyStore, java.lang.String, char[], java.lang.String) method
 will return an instance of this interface to do the signing. If a
 custom method of signing is required, for example on a remote server,
 this is the interface that will need implementing

	Since:
	2.22

	

	

Nested Class Summary

Nested Classes 	Modifier and Type	Interface	Description
	static class 	PKCS7SignatureHandler.SigningEngine.Type	
An enum that determine which type of PKCS7 Signature structure
 will be embedded with a SigningEngine

	

Method Summary

All Methods Instance Methods Abstract Methods 	Modifier and Type	Method	Description
	List<X509Certificate>	getCertificates()	

 Return the full list of X.509 certificates to be embedded into the
 signature.

	List<X509CRL>	getCRLs()	
Return a list of X.509 CRL objects that should be used if required, or null.

	String	getDigestEncryptionAlgorithm()	
Return the Digest Encryption algorithm of the signature returned from sign(byte[]),
 eg "SHA1withRSA", "SHA1withDSA", "SHA256withECDSA", or an ASN.1 OID representing the
 same, eg "1.2.840.113549.1.1.5".

	MessageDigest	getMessageDigest()	
Return a new MessageDigest to be used to compute the signature.

	List<PKCS7SignatureHandler.OCSPResponse>	getOCSPResponses()	
Return a list of OCSP responses that should be used if required, or null.

	byte[]	getTimeStampResp(byte[] digest)	

 Return an ASN.1 encoded "TimeStampResp" (as defined in RFC3161) to be embedded in the PKCS#7 object,
 or null if no TimeStampResp is available.

	PKCS7SignatureHandler.SigningEngine.Type	getType()	
Return the type of object returned from the sign(byte[]) method

	void	setPassword(PasswordCallback callback)	
Set the password on the suppled PasswordCallback.

	byte[]	sign(byte[] digest)	

 Actually sign the digest and returned the signature.

	

	

Method Detail

	
getType

PKCS7SignatureHandler.SigningEngine.Type getType()

Return the type of object returned from the sign(byte[]) method

	
getMessageDigest

MessageDigest getMessageDigest()
 throws NoSuchAlgorithmException

Return a new MessageDigest to be used to compute the signature.
 This will be called once per signature.
 Note in 2.28 the "throws NoSuchAlgorithmException" was added to the method signature

	Throws:
	NoSuchAlgorithmException

	
getCertificates

List<X509Certificate> getCertificates()
 throws IOException,
 GeneralSecurityException

 Return the full list of X.509 certificates to be embedded into the
 signature. This must include any certificates required to certify
 the signature up to the root certificate, and includes Certificates
 for any OCSP responders that would be queried as part of the
 Certificate verification process.
 The signing Certificate must be item 0 in the list.

 The one exception to this is if getType() returns PKCS7SignatureHandler.SigningEngine.Type.PKCS7_COMPLETE,
 in which case this method may return null.

 This method will be called multiple times, so the object returned
 from this method should be stored locally.

	Throws:
	IOException
	GeneralSecurityException

	
sign

byte[] sign(byte[] digest)
 throws IOException,
 GeneralSecurityException

 Actually sign the digest and returned the signature.

 The exact format of the returned item will vary depending on the
 getType(), but is typically the output of the
 Signature.sign() method. For RSA signatures this
 equates to rsa(pad(DigestInfo)), which is effectively
 rsa(pad(asn1sequence(asn1sequence(algorithm, NULL), digest))),
 where rsa is the RSA algorithm, pad is the PKCS#1 1.5
 padding algorithm, algorithm is the hash algorithm OID,
 and digest is an ASN.1 Octet string representing the digest
 supplied to this method.

 The one exception to this is if getType() returns PKCS7SignatureHandler.SigningEngine.Type.PKCS7_COMPLETE,
 in which case this method should return the entire PKCS#7 object to embed in
 the PDF.

 This method may be called with a null argument for the digest, in which case the
 API is attempting to determine the size of the signed object for space allocation
 in the final PDF. If an accurate estimate can be made, the returned array should
 be of the correct length (the contents of the array do not matter in this case).
 If no estimate can be made this method should return a zero-length array.

	Parameters:
	digest - the digest to sign, or null if it's a test run to determine sie.
	Returns:
	the signed object, as determined by the mode of this object
	Throws:
	IOException
	GeneralSecurityException

	
getTimeStampResp

byte[] getTimeStampResp(byte[] digest)
 throws IOException,
 GeneralSecurityException

 Return an ASN.1 encoded "TimeStampResp" (as defined in RFC3161) to be embedded in the PKCS#7 object,
 or null if no TimeStampResp is available. Like sign(byte[]),
 this method may be called with a null digest - if so the size of the returned
 array will be used to estimate how much space to allocate in the PDF. If this
 is not known, a zero-byte array should be returned.

 To help clarify this, here's a list of the possible inputs and outputs to this method, and what they mean.

 	input	output	explanation
	null	null	the API is trying to find out how big a TimeStamp would be if we were signing, and the null response means "there will be no timestamp"
	null	byte[0]	the API is trying to find out how big a TimeStamp would be if we were signing, and the zero-length response means "there will be a timestamp, but the only way to know how big it will be is it sign something"
	null	byte[n] 	the API is trying to find out how big a TimeStamp would be if we were signing, and the non-zero-length response means "there will be a timestamp, and it will be the same size as this byte array"
	byte[n]	null	this is a real TimeStamp request. The null response means this signature is not timestamped
	byte[n]	byte[n]	this is a real TimeStamp request. The non-zero-length response is the actual TimeStamp to embed

	Parameters:
	digest - the digest to sign, or null if it's a dummy.
	Returns:
	null to mean "no timestamp", a zero-byte array to mean "timestamp of unknown size", or a non-zero byte array which is the TimeStamp response
	Throws:
	IOException
	GeneralSecurityException

	
getDigestEncryptionAlgorithm

String getDigestEncryptionAlgorithm()

Return the Digest Encryption algorithm of the signature returned from sign(byte[]),
 eg "SHA1withRSA", "SHA1withDSA", "SHA256withECDSA", or an ASN.1 OID representing the
 same, eg "1.2.840.113549.1.1.5".

	
setPassword

void setPassword(PasswordCallback callback)

Set the password on the suppled PasswordCallback.
 This is required because some types of PKCS#11 token require a second login immediately
 before the "sign" call.
 For SigningEngines unconcerned with PKCS#11, this method can be a no-op.

	Since:
	2.25

	
getOCSPResponses

List<PKCS7SignatureHandler.OCSPResponse> getOCSPResponses()
 throws IOException,
 GeneralSecurityException

Return a list of OCSP responses that should be used if required, or null.

	Throws:
	IOException
	GeneralSecurityException
	Since:
	2.28

	
getCRLs

List<X509CRL> getCRLs()
 throws IOException,
 GeneralSecurityException

Return a list of X.509 CRL objects that should be used if required, or null.

	Throws:
	IOException
	GeneralSecurityException
	Since:
	2.28

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2024 Big Faceless Organization

