

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class PDFStyle

	java.lang.Object
	
	org.faceless.pdf2.PDFStyle

	
	All Implemented Interfaces:
	Cloneable

public class PDFStyle
extends Object
implements Cloneable

 A PDFStyle controls the colors, font and many other aspects of the actual
 display of elements on a PDF page. It's conceptually similar to a CSS
 style used with HTML markup.

 The idea behind the PDFStyle class is that you create a style and then
 apply it to the PDFPage. This means you can switch from one style
 to another with a single command, and switch back just as easily. It makes defining
 a consistant "feel" to your document much easier than it would if you had
 to set the font and color separately.

 Example

 import java.awt.Color;

 // Create a new style "normal": 12pt black Times-Roman, with
 // line-spacing of 1.5
 PDFStyle normal = new PDFStyle();
 normal.setFont(new StandardFont(StandardFont.TIMES), 12);
 normal.setFillColor(Color.black);
 normal.setTextLineSpacing(1.5);

 // Create a new varient of "normal": 12pt red Times-Italic with
 // the same line-spacing
 PDFStyle italic = new PDFStyle(normal);
 italic.setFont(new StandardFont(StandardFont.TIMESITALIC), 12);
 italic.setFillColor(Color.red);

 // Create a style to draw a box around the text in green, with a
 // line width of 2 points
 PDFStyle boxstyle = new PDFStyle();
 boxstyle.setLineColor(Color.green);
 boxstyle.setLineWeighting(2);

 // Now use these styles in a document
 PDF p = new PDF();
 PDFPage page = p.newPage(PDF.PAGESIZE_A4);
 page.setStyle(normal);
 page.drawText("This is in 12pt black Times Roman", 100, 100);
 page.setStyle(italic);
 page.drawText("This is in 12pt red Times Italic", 100, 120);

 // Draw a box around them in green
 page.setStyle(boxstyle);
 page.drawRectangle(90,90, 200, 40);

 This shows several useful aspects of styles:

 	Styles can easily be extended by using the PDFStyle(PDFStyle) constructor
	Not all the aspects of a style need to be set
	Styles can be given meaningful names

	Since:
	1.0

	

	

Field Summary

Fields 	Modifier and Type	Field	Description
	static int	BREAK_LEGACY	
A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 that applied in the PDF Library before release 2.22.1.

	static int	BREAK_LINE_ANYWHERE	
A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 as described for "line-break:anywhere" in css-text-3.

	static int	BREAK_LINE_LOOSE	
A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 as described for "line-break:loose" in css-text-3.

	static int	BREAK_LINE_NORMAL	
A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 as described for "line-break:normal" in css-text-3.

	static int	BREAK_LINE_STRICT	
A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 as described for "line-break:strict" in css-text-3.

	static int	BREAK_UAX14	
A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 exactly as described in UAX14

	static int	BREAK_WORD_BREAKALL	
A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 as described for "word-break:break-all" in css-text-3.

	static int	BREAK_WORD_KEEPALL	
A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 as described for "word-break:keep-all" in css-text-3.

	static int	BREAK_WORD_NORMAL	
A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 as described for "word-break:normal" in css-text-3.

	static int	FONTSTYLE_FILLED	
Set any text rendered in this style to be filled with the styles
 FillColor (the default)

	static int	FONTSTYLE_FILLEDOUTLINE	
Set any text rendered in this style to be filled with the styles
 FillColor, then to be outlined with the styles' LineColor

	static int	FONTSTYLE_INVISIBLE	
Set any text rendered in this style to be invisible.

	static int	FONTSTYLE_OUTLINE	
Set any text rendered in this style to be drawn as a hollow outline
 with the styles LineColor (the default)

	static char	FORMRADIOBUTTONSTYLE_CHECK	
A value for setFormRadioButtonStyle(char) and setFormCheckboxStyle(char) which
 sets the appearance for those elements to a check mark (a tick) when selected.

	static char	FORMRADIOBUTTONSTYLE_CIRCLE	
A value for setFormRadioButtonStyle(char) and setFormCheckboxStyle(char) which
 sets the appearance for those elements to a filled circle when selected.

	static char	FORMRADIOBUTTONSTYLE_CROSS	
A value for setFormRadioButtonStyle(char) and setFormCheckboxStyle(char) which
 sets the appearance for those elements to a cross or "X" when selected.

	static char	FORMRADIOBUTTONSTYLE_DIAMOND	
A value for setFormRadioButtonStyle(char) and setFormCheckboxStyle(char) which
 sets the appearance for those elements to a filled diamond when selected.

	static char	FORMRADIOBUTTONSTYLE_SQUARE	
A value for setFormRadioButtonStyle(char) and setFormCheckboxStyle(char) which
 sets the appearance for those elements to a filled square when selected.

	static char	FORMRADIOBUTTONSTYLE_STAR	
A value for setFormRadioButtonStyle(char) and setFormCheckboxStyle(char) which
 sets the appearance for those elements to a filled five-pointed star when selected.

	static int	FORMSTYLE_BEVEL	
Style for setFormStyle(int) which draws an border around the
 field so that it looks beveled.

	static int	FORMSTYLE_CLOUDY1	
Style for setFormStyle(int) which causes the border to be "cloudy" with small curves
 This style only applies to some AnnotationShape classes and AnnotationText

	static int	FORMSTYLE_CLOUDY2	
Style for setFormStyle(int) which causes the border to be "cloudy" with big curves.

	static int	FORMSTYLE_INSET	
Style for setFormStyle(int) which draws an border around the
 field so that it looks inset into the page.

	static int	FORMSTYLE_INVERT	
Style for setFormStyle(int) which causes the form element to be
 inverted when clicked

	static int	FORMSTYLE_OUTLINE	
Style for setFormStyle(int) which causes the form element to be
 outlined when clicked

	static int	FORMSTYLE_SOLID	
Style for setFormStyle(int) which draws a solid border
 around the field (the default)

	static int	FORMSTYLE_UNDERLINE	
Style for setFormStyle(int) which draws a single line under the
 field

	static int	LINECAP_BUTT	
Set the end of a line to be squared off at the end.

	static int	LINECAP_ROUND	
Set the end of a line to be rounded at the end.

	static int	LINECAP_SQUARE	
Set the end of a line to be squared at the end.

	static int	LINEJOIN_BEVEL	
Sets the join style of two lines so that the lines are beveled.

	static int	LINEJOIN_MITER	
Sets the join style of two lines so that the lines are extended so they meet at
 a point (like a picture frame).

	static int	LINEJOIN_ROUND	
Sets the join style of two lines so that the lines are rounded, equivalent to
 drawing a circle with a diameter of the linewidth where the lines meet.

	static PDFStyle	LINKSTYLE	
This style is a predefined convenience style - it can be passed into
 PDFPage.beginTextLink(org.faceless.pdf2.PDFAction, org.faceless.pdf2.PDFStyle) to underline the text in the link.

	static int	PAINTMETHOD_EVENODD	
A parameter to setPaintMethod(int) to set the paint method to
 use the even-odd method to determine which areas are inside or
 outside a shape.

	static int	PAINTMETHOD_NONZEROWINDING	
A parameter to setPaintMethod(int) to set the paint method to
 use the non-zero winding number method to determine which areas are
 inside or outside a shape.

	static int	TEXTALIGN_BASELINE	
Set the vertical text alignment for this style to baseline (the default).

	static int	TEXTALIGN_BOTTOM	
Set the vertical text alignment for this style to bottom

	static int	TEXTALIGN_CENTER	
Set the text alignment for this style to centered

	static int	TEXTALIGN_JUSTIFY	
Set the text alignment for this style to justified (the default).

	static int	TEXTALIGN_JUSTIFY_ALL	
Similar to TEXTALIGN_JUSTIFY, but will also justify the last
 line of a paragraph.

	static int	TEXTALIGN_LEFT	
Set the text alignment for this style to left-aligned

	static int	TEXTALIGN_MIDDLE	
Set the vertical text alignment for this style to middle

	static int	TEXTALIGN_RIGHT	
Set the text alignment for this style to right-aligned

	static int	TEXTALIGN_TOP	
Set the vertical text alignment for this style to top

	

Constructor Summary

Constructors 	Constructor	Description
	PDFStyle()	
Create a new PDFStyle using the default settings.

	PDFStyle(PDFStyle style)	
Create a new style which is a clone of the specified style

	

Method Summary

All Methods Instance Methods Concrete Methods Deprecated Methods 	Modifier and Type	Method	Description
	void	addBackupFont(PDFFont font)	
Add a backup font to the current style.

	Object	clone()	
Create a duplicate of this font.

	PDFGlyphVector	createGlyphVector(String text,
 int offset,
 Locale locale,
 int level)	

 Returns a PDFGlyphVector containing the glyph codes for the specified
 text in this style.

	PDFGlyphVector	createGlyphVector(String text,
 Locale locale)	
Returns a PDFGlyphVector containing the glyph codes for the specified
 text in this style.

	boolean	equals(Object o)	
	PDFFont	getBackupFont(int i)	
Get the specified backup font, as set by addBackupFont(org.faceless.pdf2.PDFFont).

	String	getBlendMode()	
Return the previously set blend mode

	Paint	getFillColor()	
Return the fill color, as set by setFillColor(java.awt.Paint)

	PDFFont	getFont()	
Return the font, as set by setFont(org.faceless.pdf2.PDFFont, float)

	int	getFontFeature(String feature)	
Get the specified font feature.

	float	getFontLeading()	
Return the text leading for this styles in points.

	float	getFontSize()	
Return the font size of this style, as set by setFont(org.faceless.pdf2.PDFFont, float)

	int	getFontStyle()	
Return the font style as set by setFontStyle(int)

	char	getFormCheckboxStyle()	
Returns the checkbox style of the current style, as set by setFormCheckboxStyle(char).

	int	getFormFieldOrientation()	
Return the form field orientation, as set by setFormFieldOrientation(int).

	char	getFormRadioButtonStyle()	
Returns the radiobutton style of the current style, as set by setFormRadioButtonStyle(char).

	int	getFormStyle()	
Returns the form-style of the current style, as set by setFormStyle(int).

	int	getLineBreakBehaviour()	
Return the line-break behaviour, as set by setLineBreakBehaviour(int)

	int	getLineCap()	
Return the line cap, as set by setLineCap(int)

	Paint	getLineColor()	
Return the line color, as set by setLineColor(java.awt.Paint)

	float[]	getLineDashPattern()	
Return the line dash pattern, as set by setLineDash(float, float, float).

	float	getLineDashPhase()	
Get the "phase" part of the line dash pattern, as set by setLineDash(float, float, float)

	int	getLineJoin()	
Return the line join, as set by setLineJoin(int)

	float	getLineJoinMiterLimit()	
Return the line join miter limit, as set by setLineJoinMiterLimit(float)

	float	getLineWeighting()	
Return the line weighting, as set by setLineWeighting(float)

	OpenTypeFont.Palette	getOpenTypeFontPalette()	
Get the OpenTypeFont.Palette previously specified with
 #setOpenTypeFontPalette

	boolean	getOverprint()	
Return whether this text has the overprint flag, as set by setOverprint(boolean)

	int	getTextAlign()	
Return the text alignment.

	float	getTextBottom(String s)	
Get the bottom-most Y co-ordinate of the specified string in points if it
 was rendered at (0,0), using the styles font and font size.

	float	getTextIndent()	
Return the text indent value as set by setTextIndent(float)

	float	getTextLeft(String s)	
Get the left-most X co-ordinate of the specified string in points if it
 was rendered at (0,0), using the styles font and font size.

	float	getTextLength(char[] c,
 int off,
 int len)	
Get the length of the specified string in points, using the
 styles font and font size.

	float	getTextLength(String s)	
Get the length of the specified string in points, using the
 styles font and font size.

	float	getTextLineSpacing()	
Return the text line spacing, as set by setTextLineSpacing(float)

	float	getTextRight(String s)	
Get the right-most X co-ordinate of the specified string in points if it
 was rendered at (0,0), using the styles font and font size.

	float	getTextRise()	
Return the text rise as set by setTextRise(float)

	float	getTextStretch()	
Return the value of the text-stretch parameter, as set by setTextStretch(float)

	boolean	getTextStrikeOut()	
Return whether this text is struck out or not, as set by setTextStrikeOut(boolean)

	float	getTextTop(String s)	
Get the top-most Y co-ordinate of the specified string in points if it
 was rendered at (0,0), using the styles font and font size.

	int	getTextUnderline()	
Return whether this text is underlined or not, as set by setTextUnderline(boolean)

	float	getTextWidths(char[] buf,
 int off,
 int len,
 float[] widths,
 float[] kerns)	
Deprecated.
call createGlyphVector(java.lang.String, java.util.Locale) and retrieve this information from there

	int	getTrackKerning()	
Return the track kerning, as set by setTrackKerning(float)

	int	hashCode()	
	boolean	isTextSmallCaps()	
Return whether this text is displayed with small-caps, as set by setTextSmallCaps(boolean)
 Since 2.22 this is identical to getFontFeature("smallcaps")

	void	setBlendMode(String mode)	
Set the "Blend Mode" of this style.

	void	setFillColor(Paint paint)	

 Set the fill color.

	void	setFont(PDFFont font,
 float size)	
Set the font and font size for this style.

	void	setFontFeature(String feature,
 boolean on)	
Set the specified font feature.

	void	setFontFeature(String feature,
 int value)	
Set the specified font feature.

	void	setFontStyle(int style)	
Set the font render style.

	void	setFormCheckboxStyle(char style)	
For FormCheckbox elements, set the type of shape to use to show
 the checkbox is selected.

	void	setFormFieldOrientation(int rotate)	
Set the angle of rotation for form fields created with this style
 as a background style.

	void	setFormRadioButtonStyle(char style)	
For FormRadioButton elements, set the type of shape to use to show
 the button is selected.

	void	setFormStyle(int style)	
Sets the style of a form fields background to one of FORMSTYLE_SOLID,
 FORMSTYLE_INSET,FORMSTYLE_BEVEL, FORMSTYLE_INVERT,
 FORMSTYLE_OUTLINE or FORMSTYLE_UNDERLINE.

	void	setLineBreakBehaviour(int breakbehaviour)	
Set the line-break behaviour, which determines how words
 break at the end of the line.

	void	setLineCap(int cap)	
Set the line cap style.

	void	setLineColor(Paint paint)	
Set the line color.

	void	setLineDash(float[] pattern,
 float phase)	

 Set the line dashing pattern.

	void	setLineDash(float on,
 float off,
 float phase)	

 Set the line dashing pattern.

	void	setLineJoin(int join)	
Set the line join style.

	void	setLineJoinMiterLimit(float limit)	
Set the miter limit for mitered line joins.

	void	setLineWeighting(float weight)	
Set the line weighting, for fonts and geometric shapes drawn as
 outlines.

	void	setOpenTypeFontPalette(OpenTypeFont.Palette palette)	
If the font being used with this Style is an OpenTypeFont which
 has one or more color palettes,
 set the Palette to use.

	void	setOverprint(boolean on)	
Cause text and objects drawn with this style to overprint.

	void	setPaintMethod(int method)	

 Set the paint method to either PAINTMETHOD_EVENODD or
 PAINTMETHOD_NONZEROWINDING (the default).

	void	setStrokeAdjustment(boolean sa)	
Set whether this style uses Stroke Adjustment

	void	setTextAlign(int textalign)	
Set the text alignment for this style.

	void	setTextDoubleUnderline(boolean on)	
Set whether text rendered with this style is double-underlined or not.

	void	setTextIndent(float indent)	

 Set the number of points to indent the first line of any text
 drawn in this style.

	void	setTextJustificationRatio(float i)	
Set the text justification ratio for a style.

	void	setTextLineSpacing(float spacing)	

 Set the spacing between lines of text.

	void	setTextRise(float offset)	

 Set the text vertical offset - the distance between the standard
 baseline and the basline for this style, as a proportion of the
 font size.

	void	setTextSmallCaps(boolean on)	
Set whether text in this style is displayed with "small-caps" - ie. all lower
 case letters are displayed as upper-case but at 80% of the original font-size.

	void	setTextStretch(float stretch)	
Set how much text is stretched horizontally.

	void	setTextStrikeOut(boolean on)	
Set whether text rendered with this style is struck-out or not.

	void	setTextUnderline(boolean on)	
Set whether text rendered with this style is underlined or not.

	void	setTrackKerning(float kern)	

 Allows you to explicitly set the kerning between characters for a font.

	PDFStyle	subscriptClone()	
Return a new style which is the "subscripted" version of
 the current style.

	PDFStyle	superscriptClone()	
Return a new style which is the "superscripted" version of
 the current style.

	String	toString()	

	

Methods inherited from class java.lang.Object

finalize, getClass, notify, notifyAll, wait, wait, wait

	

	

Field Detail

	
LINKSTYLE

public static final PDFStyle LINKSTYLE

This style is a predefined convenience style - it can be passed into
 PDFPage.beginTextLink(org.faceless.pdf2.PDFAction, org.faceless.pdf2.PDFStyle) to underline the text in the link.

	
TEXTALIGN_LEFT

public static final int TEXTALIGN_LEFT

Set the text alignment for this style to left-aligned

	See Also:
	Constant Field Values

	
TEXTALIGN_RIGHT

public static final int TEXTALIGN_RIGHT

Set the text alignment for this style to right-aligned

	See Also:
	Constant Field Values

	
TEXTALIGN_CENTER

public static final int TEXTALIGN_CENTER

Set the text alignment for this style to centered

	See Also:
	Constant Field Values

	
TEXTALIGN_JUSTIFY

public static final int TEXTALIGN_JUSTIFY

Set the text alignment for this style to justified (the default).
 Justification is only useful when text is written within a paragraph.
 When a single element of text is drawn, the effect is the same as
 left-alignment.

	See Also:
	Constant Field Values

	
TEXTALIGN_JUSTIFY_ALL

public static final int TEXTALIGN_JUSTIFY_ALL

Similar to TEXTALIGN_JUSTIFY, but will also justify the last
 line of a paragraph.

	Since:
	2.2.1
	See Also:
	Constant Field Values

	
TEXTALIGN_BASELINE

public static final int TEXTALIGN_BASELINE

Set the vertical text alignment for this style to baseline (the default).

	See Also:
	Constant Field Values

	
TEXTALIGN_TOP

public static final int TEXTALIGN_TOP

Set the vertical text alignment for this style to top

	See Also:
	Constant Field Values

	
TEXTALIGN_MIDDLE

public static final int TEXTALIGN_MIDDLE

Set the vertical text alignment for this style to middle

	See Also:
	Constant Field Values

	
TEXTALIGN_BOTTOM

public static final int TEXTALIGN_BOTTOM

Set the vertical text alignment for this style to bottom

	See Also:
	Constant Field Values

	
LINECAP_BUTT

public static final int LINECAP_BUTT

Set the end of a line to be squared off at the end. There is no
 projection beyond the end of the path. This is the default

	See Also:
	Constant Field Values

	
LINECAP_ROUND

public static final int LINECAP_ROUND

Set the end of a line to be rounded at the end. Effectively draws a circle with
 a diameter of the line width at the end of each line.

	See Also:
	Constant Field Values

	
LINECAP_SQUARE

public static final int LINECAP_SQUARE

Set the end of a line to be squared at the end. Effectively extends each line by
 half the linewidth.

	See Also:
	Constant Field Values

	
LINEJOIN_MITER

public static final int LINEJOIN_MITER

Sets the join style of two lines so that the lines are extended so they meet at
 a point (like a picture frame). For extremely sharp angles, this will automatically
 be converted to a LINEJOIN_BEVEL. This is the default.

	See Also:
	Constant Field Values

	
LINEJOIN_ROUND

public static final int LINEJOIN_ROUND

Sets the join style of two lines so that the lines are rounded, equivalent to
 drawing a circle with a diameter of the linewidth where the lines meet.

	See Also:
	Constant Field Values

	
LINEJOIN_BEVEL

public static final int LINEJOIN_BEVEL

Sets the join style of two lines so that the lines are beveled. The two lines
 are drawn with LINECAP_BUTT ends, and the notch between the two segments is
 filled in with a triangle.

	See Also:
	Constant Field Values

	
FONTSTYLE_FILLED

public static final int FONTSTYLE_FILLED

Set any text rendered in this style to be filled with the styles
 FillColor (the default)

	See Also:
	Constant Field Values

	
FONTSTYLE_OUTLINE

public static final int FONTSTYLE_OUTLINE

Set any text rendered in this style to be drawn as a hollow outline
 with the styles LineColor (the default)

	See Also:
	Constant Field Values

	
FONTSTYLE_FILLEDOUTLINE

public static final int FONTSTYLE_FILLEDOUTLINE

Set any text rendered in this style to be filled with the styles
 FillColor, then to be outlined with the styles' LineColor

	See Also:
	Constant Field Values

	
FONTSTYLE_INVISIBLE

public static final int FONTSTYLE_INVISIBLE

Set any text rendered in this style to be invisible. This becomes
 useful in applications like OCR, where the original scanned image
 is displayed on the screen and invisible text written above it,
 allowing the text to be cut and pasted.

	See Also:
	Constant Field Values

	
PAINTMETHOD_NONZEROWINDING

public static final int PAINTMETHOD_NONZEROWINDING

A parameter to setPaintMethod(int) to set the paint method to
 use the non-zero winding number method to determine which areas are
 inside or outside a shape. This is the default.

	See Also:
	Constant Field Values

	
PAINTMETHOD_EVENODD

public static final int PAINTMETHOD_EVENODD

A parameter to setPaintMethod(int) to set the paint method to
 use the even-odd method to determine which areas are inside or
 outside a shape.

	See Also:
	Constant Field Values

	
FORMSTYLE_SOLID

public static final int FORMSTYLE_SOLID

Style for setFormStyle(int) which draws a solid border
 around the field (the default)

	See Also:
	Constant Field Values

	
FORMSTYLE_INSET

public static final int FORMSTYLE_INSET

Style for setFormStyle(int) which draws an border around the
 field so that it looks inset into the page.

	See Also:
	Constant Field Values

	
FORMSTYLE_BEVEL

public static final int FORMSTYLE_BEVEL

Style for setFormStyle(int) which draws an border around the
 field so that it looks beveled.

	See Also:
	Constant Field Values

	
FORMSTYLE_UNDERLINE

public static final int FORMSTYLE_UNDERLINE

Style for setFormStyle(int) which draws a single line under the
 field

	See Also:
	Constant Field Values

	
FORMSTYLE_INVERT

public static final int FORMSTYLE_INVERT

Style for setFormStyle(int) which causes the form element to be
 inverted when clicked

	See Also:
	Constant Field Values

	
FORMSTYLE_OUTLINE

public static final int FORMSTYLE_OUTLINE

Style for setFormStyle(int) which causes the form element to be
 outlined when clicked

	See Also:
	Constant Field Values

	
FORMSTYLE_CLOUDY1

public static final int FORMSTYLE_CLOUDY1

Style for setFormStyle(int) which causes the border to be "cloudy" with small curves
 This style only applies to some AnnotationShape classes and AnnotationText

	Since:
	2.11.17
	See Also:
	Constant Field Values

	
FORMSTYLE_CLOUDY2

public static final int FORMSTYLE_CLOUDY2

Style for setFormStyle(int) which causes the border to be "cloudy" with big curves.
 This style only applies to some AnnotationShape classes and AnnotationText

	Since:
	2.11.17
	See Also:
	Constant Field Values

	
FORMRADIOBUTTONSTYLE_CHECK

public static final char FORMRADIOBUTTONSTYLE_CHECK

A value for setFormRadioButtonStyle(char) and setFormCheckboxStyle(char) which
 sets the appearance for those elements to a check mark (a tick) when selected. This is
 the default for FormCheckbox elements.

	Since:
	2.0
	See Also:
	Constant Field Values

	
FORMRADIOBUTTONSTYLE_CIRCLE

public static final char FORMRADIOBUTTONSTYLE_CIRCLE

A value for setFormRadioButtonStyle(char) and setFormCheckboxStyle(char) which
 sets the appearance for those elements to a filled circle when selected. This is
 default for FormRadioButton elements.

	Since:
	2.0
	See Also:
	Constant Field Values

	
FORMRADIOBUTTONSTYLE_CROSS

public static final char FORMRADIOBUTTONSTYLE_CROSS

A value for setFormRadioButtonStyle(char) and setFormCheckboxStyle(char) which
 sets the appearance for those elements to a cross or "X" when selected.

	Since:
	2.0
	See Also:
	Constant Field Values

	
FORMRADIOBUTTONSTYLE_SQUARE

public static final char FORMRADIOBUTTONSTYLE_SQUARE

A value for setFormRadioButtonStyle(char) and setFormCheckboxStyle(char) which
 sets the appearance for those elements to a filled square when selected.

	Since:
	2.0
	See Also:
	Constant Field Values

	
FORMRADIOBUTTONSTYLE_DIAMOND

public static final char FORMRADIOBUTTONSTYLE_DIAMOND

A value for setFormRadioButtonStyle(char) and setFormCheckboxStyle(char) which
 sets the appearance for those elements to a filled diamond when selected.

	Since:
	2.0
	See Also:
	Constant Field Values

	
FORMRADIOBUTTONSTYLE_STAR

public static final char FORMRADIOBUTTONSTYLE_STAR

A value for setFormRadioButtonStyle(char) and setFormCheckboxStyle(char) which
 sets the appearance for those elements to a filled five-pointed star when selected.

	Since:
	2.0
	See Also:
	Constant Field Values

	
BREAK_LEGACY

public static final int BREAK_LEGACY

A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 that applied in the PDF Library before release 2.22.1. These rules were as defined
 in UAX#13 version 12.

	
BREAK_UAX14

public static final int BREAK_UAX14

A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 exactly as described in UAX14

	Since:
	2.22.1

	
BREAK_LINE_NORMAL

public static final int BREAK_LINE_NORMAL

A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 as described for "line-break:normal" in css-text-3.
 This value can be combined with a BREAK_WORD_n value using a logical-or

	Since:
	2.22.1

	
BREAK_LINE_LOOSE

public static final int BREAK_LINE_LOOSE

A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 as described for "line-break:loose" in css-text-3.
 This value can be combined with a BREAK_WORD_n value using a logical-or

	Since:
	2.22.1

	
BREAK_LINE_STRICT

public static final int BREAK_LINE_STRICT

A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 as described for "line-break:strict" in css-text-3.
 This value can be combined with a BREAK_WORD_n value using a logical-or

	Since:
	2.22.1

	
BREAK_LINE_ANYWHERE

public static final int BREAK_LINE_ANYWHERE

A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 as described for "line-break:anywhere" in css-text-3.
 It will allow a breakpoint between any two glyphs.

	Since:
	2.22.1

	
BREAK_WORD_BREAKALL

public static final int BREAK_WORD_BREAKALL

A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 as described for "word-break:break-all" in css-text-3.
 This value can be combined with a BREAK_LINE_n value using a logical-or

	Since:
	2.22.1

	
BREAK_WORD_KEEPALL

public static final int BREAK_WORD_KEEPALL

A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 as described for "word-break:keep-all" in css-text-3.
 This value can be combined with a BREAK_LINE_n value using a logical-or

	Since:
	2.22.1

	
BREAK_WORD_NORMAL

public static final int BREAK_WORD_NORMAL

A value for setLineBreakBehaviour(int) that will use the line-breaking rules
 as described for "word-break:normal" in css-text-3.
 This value can be combined with a BREAK_LINE_n value using a logical-or

	Since:
	2.22.1

	

Constructor Detail

	
PDFStyle

public PDFStyle()

Create a new PDFStyle using the default settings. No fill color, line color
 or font is specified

	
PDFStyle

public PDFStyle(PDFStyle style)

Create a new style which is a clone of the specified style

	Since:
	2.0

	

Method Detail

	
hashCode

public int hashCode()

	Overrides:
	hashCode in class Object

	
equals

public boolean equals(Object o)

	Overrides:
	equals in class Object

	
setFillColor

public void setFillColor(Paint paint)

 Set the fill color. For text, this is the color of the text.
 For geometric shapes, this is paint to fill those shapes with.
 To draw only outlines, set it to null (the default).

 Prior to release 1.2, this method took a Color as an argument,
 but this has been changed to its superclass Paint instead.
 Although most of the time the parameter will still be a plain color,
 this change allows a GradientPaint to be used as well.

	Parameters:
	paint - the paint to use, or null if no fill
 is required.
	Since:
	1.0

	
setLineColor

public void setLineColor(Paint paint)

Set the line color. For text, this is the color of the outline of
 the text. For geometric shapes, this is color to draw the outlines
 of those shapes. If no outline is required, set it to
 null (the default).

	Parameters:
	paint - the Color to use, or null if no outline
 is required.
	Since:
	1.0

	
setLineWeighting

public void setLineWeighting(float weight)

Set the line weighting, for fonts and geometric shapes drawn as
 outlines. The minimum possible value is zero, which indicates to
 the PDF renderer to use the thinest line possible. On high-resolution
 devices this will become nearly invisible, and because of its
 device-dependent nature a value of 0 is not recommended.

 Changes to this setting midway through a path don't take effect until the path is closed.

	Parameters:
	weight - the thickness of the line in points, or 0 for "as thin as possible"
	Since:
	1.0

	
setLineDash

public void setLineDash(float on,
 float off,
 float phase)

 Set the line dashing pattern. Since 2.7.8 this method simply calls
 setLineDash(new float[] { on, off }, phase).

	Parameters:
	on - how many points of the line to draw
	off - how many points of the line to skip
	phase - how far into the pattern to start
	Since:
	1.0

	
setLineDash

public void setLineDash(float[] pattern,
 float phase)

 Set the line dashing pattern. The pattern parameter is an
 array of 1 or more float values that are > 0, which define the length in
 points of the alternating "on" and "off" segments of any lines drawn with
 this style. The phase paramter determines how far into this
 pattern to start.

 To draw solid lines, the first parameter should be null.

 Changes to this setting midway through a path don't take
 effect until the path is closed.

	Parameters:
	pattern - the pattern of alternating on/off segments, or null
 to draw solid lines
	phase - how far into the pattern to start
	Since:
	2.7.8

	
setFont

public void setFont(PDFFont font,
 float size)

Set the font and font size for this style. For styles passed in to
 Form.setTextStyle(org.faceless.pdf2.PDFStyle) and WidgetAnnotation.setTextStyle(org.faceless.pdf2.PDFStyle), a font
 size of zero means "autosize" the text. In other situatios, a zero size will
 cause an error when the style is used to render text.

	Parameters:
	font - the font to use
	size - the size of the font. Must be greater than zero, except in the situation above
 when it may also be equal to zero.
	Since:
	1.0

	
setFontFeature

public void setFontFeature(String feature,
 boolean on)

Set the specified font feature. This method takes the same parameters as the
 PDFFont.setFeature(String,boolean) method, but the features will be only be applied
 to the font for text created with this style.

	Since:
	2.14.1

	
setFontFeature

public void setFontFeature(String feature,
 int value)

Set the specified font feature. This method takes the same parameters as the
 PDFFont.setFeature(String,int) method, but the features will be only be applied
 to the font for text created with this style.

	Since:
	2.22

	
getFontFeature

public int getFontFeature(String feature)

Get the specified font feature. This method will return the value set by setFontFeature(java.lang.String, boolean),
 or if not set the value of PDFFont.getFeature(java.lang.String) for the style's font. If no font is set
 it will always return 0

	Since:
	2.14.1 (prior to 2.22 this returned a boolean)

	
getOpenTypeFontPalette

public OpenTypeFont.Palette getOpenTypeFontPalette()

Get the OpenTypeFont.Palette previously specified with
 #setOpenTypeFontPalette

	Since:
	2.24.1

	
setOpenTypeFontPalette

public void setOpenTypeFontPalette(OpenTypeFont.Palette palette)

If the font being used with this Style is an OpenTypeFont which
 has one or more color palettes,
 set the Palette to use. Any text created with that font will
 use the specified palette, provided the "color" feature is also
 set. Note it is possible to set a custom palette not retrieved
 from the font, provided it has the correct number of entries.
 If no palette is specified, the first palette from the font
 will be used (this is the default).

	Parameters:
	palette - the color palette to use when rendering the font
	Since:
	2.24.1

	
setTextAlign

public void setTextAlign(int textalign)

Set the text alignment for this style. The alignment may be any one of
 TEXTALIGN_LEFT, TEXTALIGN_RIGHT, TEXTALIGN_CENTER or TEXTALIGN_JUSTIFY, which control the horizontal alignment, added to any one of TEXTALIGN_BASELINE, TEXTALIGN_TOP, TEXTALIGN_MIDDLE or TEXTALIGN_BOTTOM, which control
 the vertical alignment.

	Parameters:
	textalign - the text alignment to use for this style
	Since:
	1.0, with vertical alignment added in 1.2

	
setTextLineSpacing

public void setTextLineSpacing(float spacing)

 Set the spacing between lines of text. The paramater is a multiple
 of the default spacing between lines for this font (as determined by the
 PDFFont.getDefaultLeading() method). This allows individual fonts to set
 their preferred line spacing more accurately.

 The default value is 1, for single-spaced text. A value of 1.5 sets
 line-and-a-half spacing, a value of 2 gives double spacing, and so on.

	Parameters:
	spacing - the spacing between lines
	Since:
	1.0

	
setTextIndent

public void setTextIndent(float indent)

 Set the number of points to indent the first line of any text
 drawn in this style. Positive values result in the first line
 being indented to the right, negative values in the first line
 being indented to the left (this is reversed for RTL scripts)

 Note that mixing styles with different text-indent levels on
 the first line of text in a paragraph will result in
 unpredictable results.

	Since:
	1.1.21

	
setTextJustificationRatio

public void setTextJustificationRatio(float i)

Set the text justification ratio for a style. When a line of text is
 padded to justify it against two margins, there is always the the option of
 extending the space between each character, extending the space between each
 word, or a combination of the two. The "justification ratio" determines how
 much to apply to each. A ratio of 0 means "only extend the spaces between
 words", a ratio of 1 means "only extend the spaces between letters". The
 default is 0.5.

	Since:
	1.0

	
setFontStyle

public void setFontStyle(int style)

Set the font render style. Can be one of FONTSTYLE_FILLED
 (the default), FONTSTYLE_OUTLINE,
 FONTSTYLE_FILLEDOUTLINE or FONTSTYLE_INVISIBLE.

	Since:
	1.1

	
setOverprint

public void setOverprint(boolean on)

Cause text and objects drawn with this style to overprint.
 Has no effect unless the fill and/or line color are CMYK or
 Spot colors. The default is false.

	Since:
	2.10

	
setTextUnderline

public void setTextUnderline(boolean on)

Set whether text rendered with this style is underlined or not.
 The exact position and width of the underlining is font specific.
 The default is false.

	Since:
	1.1

	
setTextDoubleUnderline

public void setTextDoubleUnderline(boolean on)

Set whether text rendered with this style is double-underlined or not.
 The exact position and width of the underlining is font specific.
 The default is false.

	Since:
	2.11.12

	
setTextStrikeOut

public void setTextStrikeOut(boolean on)

Set whether text rendered with this style is struck-out or not.
 The default is false.

	Since:
	1.1

	
setTextSmallCaps

public void setTextSmallCaps(boolean on)

Set whether text in this style is displayed with "small-caps" - ie. all lower
 case letters are displayed as upper-case but at 80% of the original font-size.
 The default is false.
 Since 2.22 this is identical to setFontFeature("smallcaps")

	Since:
	2.5

	
setTrackKerning

public void setTrackKerning(float kern)

 Allows you to explicitly set the kerning between characters for a font.
 This method may be called as many times as necessary - between each
 character if required - to set the kerning distance between characters
 for all future text rendered in this style ("characters" in this context
 includes spaces). This "track kerning" is used as well as the standard
 "pair-wise" kerning, as returned by PDFFont.getKerning(char, char).

 If text-alignment is set to TEXTALIGN_JUSTIFY, kerning (both
 track and pairwise) is scaled up or down depending on the justification
 required.

	Parameters:
	kern - the space to place between each character in millipoints
 (thousandths of a point) if this font was rendered one point high. May be
 positive, which moves the characters apart, or negative to move them closer
 together.
	Since:
	1.1.14
	See Also:
	PDFFont.getKerning(char, char)

	
setTextRise

public void setTextRise(float offset)

 Set the text vertical offset - the distance between the standard
 baseline and the basline for this style, as a proportion of the
 font size. This is mainly used for superscripting or subscripting.
 text.

 As an example, if you wanted to create a line of text that was 6 points
 high and 6 points above the standard baseline, set the font size to
 6 and the TextRise() to 1. (1x6 = 6 points above the baseline).
 To place the same text 3 points below the baseline, set the offset to -0.5.

	Since:
	1.1

	
addBackupFont

public void addBackupFont(PDFFont font)

Add a backup font to the current style. Backup fonts are used when
 the standard font doesn't have a character defined - for example, creating
 a style with the "Times Roman" font and then adding a backup font of
 "Symbol" would allow text to be written in both English and Greek without
 changing styles. As many backup fonts as are required may be added.

	Parameters:
	font - the font to add as a backup for the current style.
	Since:
	1.2

	
setFormStyle

public void setFormStyle(int style)

Sets the style of a form fields background to one of FORMSTYLE_SOLID,
 FORMSTYLE_INSET,FORMSTYLE_BEVEL, FORMSTYLE_INVERT,
 FORMSTYLE_OUTLINE or FORMSTYLE_UNDERLINE. This method can be
 applied to the background style passed into the Form.setBackgroundStyle(org.faceless.pdf2.PDFStyle) and
 WidgetAnnotation.setBackgroundStyle(org.faceless.pdf2.PDFStyle) methods, but for all other purposes
 (eg. setting the style of a page), this setting is ignored.

	Parameters:
	style - the type of background to draw the form field.
	Since:
	1.1.23

	
setFormRadioButtonStyle

public void setFormRadioButtonStyle(char style)

For FormRadioButton elements, set the type of shape to use to show
 the button is selected. The default value is FORMRADIOBUTTONSTYLE_CIRCLE,
 which creates round radio buttons in the traditional HTML style

	Parameters:
	style - one of FORMRADIOBUTTONSTYLE_CIRCLE, FORMRADIOBUTTONSTYLE_CHECK, FORMRADIOBUTTONSTYLE_DIAMOND, FORMRADIOBUTTONSTYLE_CROSS, FORMRADIOBUTTONSTYLE_SQUARE or FORMRADIOBUTTONSTYLE_STAR
	Since:
	2.0

	
setFormCheckboxStyle

public void setFormCheckboxStyle(char style)

For FormCheckbox elements, set the type of shape to use to show
 the checkbox is selected. The default value is FORMRADIOBUTTONSTYLE_CHECK,
 which creates checkboxes in the traditional HTML style

	Parameters:
	style - one of FORMRADIOBUTTONSTYLE_CIRCLE, FORMRADIOBUTTONSTYLE_CHECK, FORMRADIOBUTTONSTYLE_DIAMOND, FORMRADIOBUTTONSTYLE_CROSS, FORMRADIOBUTTONSTYLE_SQUARE or FORMRADIOBUTTONSTYLE_STAR
	Since:
	2.0

	
setPaintMethod

public void setPaintMethod(int method)

 Set the paint method to either PAINTMETHOD_EVENODD or
 PAINTMETHOD_NONZEROWINDING (the default). The paint method
 determines which area of a self-intersecting polygon is filled. If
 your polygons aren't self-intersecting, it has no effect.

 This setting is very obscure and is really only here for completeness.
 For a full discussion of the difference see the PDF Reference manual version 1.4, page 169.

	Since:
	1.1.5

	
setLineCap

public void setLineCap(int cap)

Set the line cap style. Line caps are the shape of the end of the line -
 normally not noticable unless you're drawing very thick lines or are zoomed
 in a long way. The default is LINECAP_BUTT

 Changes to this setting midway through a path don't take effect until the path is closed.

 This setting is very obscure and is really only here for completeness.
 For a full discussion of the difference see the PDF Reference manual version 1.4, page 153.

	Parameters:
	cap - one of LINECAP_BUTT, LINECAP_ROUND or LINECAP_SQUARE
	Since:
	1.0

	
setLineJoin

public void setLineJoin(int join)

Set the line join style. Line caps are the shape of the join between two
 line segments - normally not noticable unless you're drawing very thick
 lines or are zoomed in a long way. The default is LINEJOIN_MITER

 Changes to this setting midway through a path don't take effect until the path is closed.

 This setting is very obscure and is really only here for completeness.
 For a full discussion of the difference see the PDF Reference manual version 1.4, page 153.

	Parameters:
	join - one of LINEJOIN_MITER, LINEJOIN_ROUND or LINEJOIN_BEVEL.
	Since:
	1.0

	
setLineJoinMiterLimit

public void setLineJoinMiterLimit(float limit)

Set the miter limit for mitered line joins. The default is 10.

	Since:
	2.23.1

	
getLineCap

public int getLineCap()

Return the line cap, as set by setLineCap(int)

	
getLineJoin

public int getLineJoin()

Return the line join, as set by setLineJoin(int)

	
getLineJoinMiterLimit

public float getLineJoinMiterLimit()

Return the line join miter limit, as set by setLineJoinMiterLimit(float)

	
getLineColor

public Paint getLineColor()

Return the line color, as set by setLineColor(java.awt.Paint)

	
getFillColor

public Paint getFillColor()

Return the fill color, as set by setFillColor(java.awt.Paint)

	
getFontSize

public float getFontSize()

Return the font size of this style, as set by setFont(org.faceless.pdf2.PDFFont, float)

	Since:
	1.0

	
getOverprint

public boolean getOverprint()

Return whether this text has the overprint flag, as set by setOverprint(boolean)

	Since:
	2.21

	
getTextUnderline

public int getTextUnderline()

Return whether this text is underlined or not, as set by setTextUnderline(boolean)

	Since:
	2.21

	
getTextStrikeOut

public boolean getTextStrikeOut()

Return whether this text is struck out or not, as set by setTextStrikeOut(boolean)

	Since:
	2.21

	
isTextSmallCaps

public boolean isTextSmallCaps()

Return whether this text is displayed with small-caps, as set by setTextSmallCaps(boolean)
 Since 2.22 this is identical to getFontFeature("smallcaps")

	Since:
	2.21

	
getTextLineSpacing

public float getTextLineSpacing()

Return the text line spacing, as set by setTextLineSpacing(float)

	
getLineWeighting

public float getLineWeighting()

Return the line weighting, as set by setLineWeighting(float)

	
getTrackKerning

public int getTrackKerning()

Return the track kerning, as set by setTrackKerning(float)

	Since:
	2.21

	
getTextAlign

public int getTextAlign()

Return the text alignment. This method can be used to return the alignment
 of FormText Widget annotations. It can not be used to determine
 the alignment of text extracted from the body of the PDF - alignment is not a
 concept used by PDF except in form fields.

	Since:
	2.6.5

	
getTextIndent

public float getTextIndent()

Return the text indent value as set by setTextIndent(float)

	Since:
	1.1.21

	
getFontLeading

public float getFontLeading()

Return the text leading for this styles in points. The leading is the
 distance between the baseline of two successive lines of text, and
 is defined as:

 getFontSize() * font.getDefaultLeading() * getTextLineSpacing()

	Since:
	1.0

	
getFontStyle

public int getFontStyle()

Return the font style as set by setFontStyle(int)

	
getTextRise

public float getTextRise()

Return the text rise as set by setTextRise(float)

	Since:
	2.21

	
setTextStretch

public void setTextStretch(float stretch)

Set how much text is stretched horizontally. By default
 the text has a horizontal stretch factor of 1.0, but this
 can be increased (to widen the text) or reduced to narrow
 it. The supplied value must be greater than zero.

	Parameters:
	stretch - the text stretch factor. Must be > 0.
	Since:
	2.0.3

	
getTextStretch

public float getTextStretch()

Return the value of the text-stretch parameter, as set by setTextStretch(float)

	Since:
	2.21

	
getLineDashPhase

public float getLineDashPhase()

Get the "phase" part of the line dash pattern, as set by setLineDash(float, float, float)

	Since:
	1.1

	
getLineDashPattern

public float[] getLineDashPattern()

Return the line dash pattern, as set by setLineDash(float, float, float). The returned
 value is null if no dash pattern is in use, or an array of 1
 or more positive values.

	Since:
	2.7.8

	
getFont

public PDFFont getFont()

Return the font, as set by setFont(org.faceless.pdf2.PDFFont, float)

	Since:
	1.0

	
getBackupFont

public PDFFont getBackupFont(int i)

Get the specified backup font, as set by addBackupFont(org.faceless.pdf2.PDFFont). The argument
 to this method determines which backup font to return - zero for the first,
 one for the second and so on.

	Parameters:
	i - the backup font to return
	Returns:
	the specified backup font, or null if no backup font
 exists at that index.
	Since:
	1.2

	
getFormStyle

public int getFormStyle()

Returns the form-style of the current style, as set by setFormStyle(int).

	Since:
	1.1.23

	
getFormRadioButtonStyle

public char getFormRadioButtonStyle()

Returns the radiobutton style of the current style, as set by setFormRadioButtonStyle(char).

	Since:
	2.0

	
getFormCheckboxStyle

public char getFormCheckboxStyle()

Returns the checkbox style of the current style, as set by setFormCheckboxStyle(char).

	Since:
	2.0

	
getFormFieldOrientation

public int getFormFieldOrientation()

Return the form field orientation, as set by setFormFieldOrientation(int).
 Returned value will be one of 0, 90, 180 or 270.

	Since:
	2.7.7

	
setStrokeAdjustment

public void setStrokeAdjustment(boolean sa)

Set whether this style uses Stroke Adjustment

	
setFormFieldOrientation

public void setFormFieldOrientation(int rotate)

Set the angle of rotation for form fields created with this style
 as a background style.

	Parameters:
	rotate - the form rotation - one of 0 (the default), 90, 180 or 270.
	Since:
	2.7.7

	
setLineBreakBehaviour

public void setLineBreakBehaviour(int breakbehaviour)

Set the line-break behaviour, which determines how words
 break at the end of the line. Valid values are
 	{link #BREAK_UAX14}, to use the rules defined in the most recent version of UAX #14
	{link #BREAK_LEGACY}, to use the legacy rules used by the PDF Library up until 2.22.1, and based on UAX#14 version 12
	{link #BREAK_WORD_NORMAL}, to use same rules as CSS word-break: normal-all
	{link #BREAK_WORD_BREAKALL}, to use same rules as CSS word-break: break-all
	{link #BREAK_WORD_KEEPALL}, to use same rules as CSS word-break: keep-all
	{link #BREAK_LINE_LOOSE}, to use same rules as CSS line-break: loose
	{link #BREAK_LINE_NORMAL}, to use same rules as CSS line-break: normal
	{link #BREAK_LINE_STRICT}, to use same rules as CSS line-break: strict
	{link #BREAK_LINE_ANYWHERE}, to use same rules as CSS line-break: anywhere

 It is possible to mix BREAK_WORD_X and BREAK_LINE_X values with a logical-or, eg

 style.setLineBreakBehaviour(PDFStyle.BREAK_LINE_NORMAL | PDFStyle.BREAK_WORD_NORMAL)

	Since:
	2.22.1

	
getLineBreakBehaviour

public int getLineBreakBehaviour()

Return the line-break behaviour, as set by setLineBreakBehaviour(int)

	Since:
	2.22.1

	
getTextLength

public float getTextLength(String s)

Get the length of the specified string in points, using the
 styles font and font size. The line of text must not contain
 any newlines. Note this is a legacy method; for styles
 containing no backup fonts, it is faster to use a
 PDFGlyphVector to measure and display text.

	Parameters:
	s - the String to measure the length of
	Returns:
	the length of the string in points if drawn in this style

	
getTextLeft

public float getTextLeft(String s)

Get the left-most X co-ordinate of the specified string in points if it
 was rendered at (0,0), using the styles font and font size. The line of
 text must not contain any newlines.
 This method takes track-kerning into account.

	Returns:
	the left edge of the string in points if drawn in this style

	
getTextRight

public float getTextRight(String s)

Get the right-most X co-ordinate of the specified string in points if it
 was rendered at (0,0), using the styles font and font size. The line of
 text must not contain any newlines.
 This method takes track-kerning into account.

	Returns:
	the right edge of the string in points if drawn in this style

	
getTextTop

public float getTextTop(String s)

Get the top-most Y co-ordinate of the specified string in points if it
 was rendered at (0,0), using the styles font and font size. The line of
 text must not contain any newlines.

	Returns:
	the top edge of the string in points if drawn in this style

	
getTextBottom

public float getTextBottom(String s)

Get the bottom-most Y co-ordinate of the specified string in points if it
 was rendered at (0,0), using the styles font and font size. The line of
 text must not contain any newlines.

	Returns:
	the bottom edge of the string in points if drawn in this style

	
getTextWidths

@Deprecated
public float getTextWidths(char[] buf,
 int off,
 int len,
 float[] widths,
 float[] kerns)

Deprecated.
call createGlyphVector(java.lang.String, java.util.Locale) and retrieve this information from there

As getTextLength() but sets the width of
 each character in the specified arrays; a very low level routine unlikely to be
 used by many, but useful for calculating break points for advanced layout engines
 like the Report Generator.

	Parameters:
	buf - the character buffer to use
	off - the offset into that buffer to start at
	len - the number of characters to process
	widths - if not null, an array len long which will be populated
 with the width of each character in points
	kerns - If not null, an array len long which will be populated
 with the kerning values after each character, in points. Negative values move the
 next character closer, positive moves them further away.
	Returns:
	the total width of the text, as from getTextLength()
	Since:
	2.6

	
getTextLength

public float getTextLength(char[] c,
 int off,
 int len)

Get the length of the specified string in points, using the
 styles font and font size. Identical to getTextLength(String)

	Parameters:
	c - the character buffer to use
	off - the offset into that buffer to start at
	len - the number of characters to process
	Since:
	1.2.1

	
clone

public Object clone()

Create a duplicate of this font. It's probably more convenient
 to use the PDFStyle(PDFStyle) constructor, as it will
 save you having to typecast the response

	Overrides:
	clone in class Object

	
superscriptClone

public PDFStyle superscriptClone()

Return a new style which is the "superscripted" version of
 the current style.

	Since:
	1.1

	
subscriptClone

public PDFStyle subscriptClone()

Return a new style which is the "subscripted" version of
 the current style.

	Since:
	1.1

	
toString

public String toString()

	Overrides:
	toString in class Object

	
setBlendMode

public void setBlendMode(String mode)

Set the "Blend Mode" of this style. The mode may be one of
 "Normal", "Multiply", "Screen", "Overlay", "Darken", "Lighten", "ColorDodge", "ColorBurn", "HardLight", "SoftLight", "Difference", "Exclusion", "Hue", "Color", "Saturation" or "Luminosity". Blend modes may not work
 in all situations.

	Since:
	2.11.7

	
getBlendMode

public String getBlendMode()

Return the previously set blend mode

	
createGlyphVector

public PDFGlyphVector createGlyphVector(String text,
 Locale locale)

Returns a PDFGlyphVector containing the glyph codes for the specified
 text in this style. Simply returns createGlyphVector(text, 0, locale, 0)

	Parameters:
	text - the text to display
	locale - the locale of the text, or null to use the default
	Since:
	2.11.22
	See Also:
	PDFGlyphVector,
PDFCanvas.drawGlyphVector(org.faceless.pdf2.PDFGlyphVector, float, float)

	
createGlyphVector

public PDFGlyphVector createGlyphVector(String text,
 int offset,
 Locale locale,
 int level)

 Returns a PDFGlyphVector containing the glyph codes for the specified
 text in this style. This can then be drawn directly to a PDFCanvas.
 See the PDFGlyphVector class for an example.

 Note that the returned PDFGlyphVector may not represent the complete String:
 the returned item will contain as many characters as can be displayed in this font,
 which may be the same as text.length(), or empty if none of the
 characters are available in the font. See PDFGlyphVector.getTextLength()
 to determine how many characters were consumed.

	Parameters:
	text - the text to display
	text - the offset to add to any indices into that text, as returned by PDFGlyphVector.getFirstIndex(int) (0 if in doubt)
	locale - the locale of the text, or null to use the default
	level - the level in the Unicode bidirectional algorithm for this glyph vector, or 0 if it doesn't apply.
	See Also:
	PDFGlyphVector,
PDFCanvas.drawGlyphVector(org.faceless.pdf2.PDFGlyphVector, float, float)

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2024 Big Faceless Organization

