

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class PDFPage

	java.lang.Object
	
	org.faceless.pdf2.PDFPage

	
	All Implemented Interfaces:
	Cloneable, PDFDrawable

public final class PDFPage
extends Object
implements PDFDrawable

Represents a Page in a PDF document.
 1. Geometry

 By default, the geometry of a PDF page is measured in points (defined in
 PostScript as 1/72 of an inch), from the bottom-left hand corner of the page.
 This can be altered by calling the setUnits() method, which can be
 used to set the page to measure in CM, MM, inches and so on, or change the
 origin (0,0) point from the bottom left of the page to the top left.

 2. Drawing Shapes

 Geometric shapes are drawn using either the simple "draw" methods or the more
 powerful "path" methods. Whether the shape is filled or just drawn as an outline
 depends on the FillColor and LineColor
 of the current style.

 	
 drawLine(), drawRectangle(), drawPolygon(), drawEllipse(), drawCircle(), drawCircleArc(), drawEllipseArc(), drawRoundedRectangle():
 These methods draw simple shapes onto the page with a single method call.

 PDFPage page = pdf.newPage(PAGESIZE_A4);
 PDFStyle linestyle = new PDFStyle();
 linestyle.setLineColor(java.awt.Color.red);

 // Draw a rectangle with two diagonal lines inside it.
 page.setStyle(linestyle);
 page.drawRectangle(100,100, 400, 300); // Box
 page.drawLine(100,100, 400, 300); // Diagonal 1
 page.drawLine(100,300, 400, 100); // Diagonal 2

	
 pathMove(), pathLine(), pathBezier(), pathArc() and pathClose():
 These more primitive methods allow greater control over the creation of
 geometric shapes, by creating a "path" which can then be drawn with the
 pathPaint() method.

 PDFPage page = pdf.newPage(PAGESIZE_A4);
 PDFStyle linestyle = new PDFStyle();
 linestyle.setLineColor(java.awt.Color.red);

 // Draw the same rectangle with two diagonal lines inside it.
 page.setStyle(linestyle);
 page.pathMove(100,100); // Start Box
 page.pathLine(100,300);
 page.pathLine(400,300);
 page.pathLine(400,100);
 page.pathLine(100,300); // Diagonal 1
 page.pathMove(100,100); // Start Diagonal 2
 page.pathLine(400,300);
 page.pathPaint(); // Paint everything since the first pathMove

 3. Drawing Text
 	A single lines of text can be drawn at a specified location by using the
 drawText(String, float, float) method.

 PDFPage page = pdf.newPage(PAGESIZE_A4);
 PDFStyle textstyle = new PDFStyle();
 textstyle.setFillColor(java.awt.Color.black);
 textstyle.setFont(new StandardFont(StandardFont.COURIER), 12);

 // Draw some text at the specified location
 page.setStyle(textstyle);
 page.drawText("This is some text", 100, 100);

	Larger blocks of text can be drawn by calling beginText(),
 followed by one or more calls to drawText(String), and closing with
 a call to endText(). Until version 1.2 of the library, this method
 was the only way to draw text over multiple lines, and while it is quite capable
 (allowing you to mix several styles in a single paragraph), it does not handle wrapping
 at the end of a page or column well, cannot wrap around images or other blocks and has
 problems with exact positioning and measurement of text. It's also a bit slower than the
 next method. Still, we'll demonstrate it here for completeness.

 PDFPage page = pdf.newPage(PAGESIZE_A4); // 595 x 842 points

 // Create first style - 12pt black Helvetica
 PDFStyle style1 = new PDFStyle();
 style1.setFillColor(java.awt.Color.black);
 style1.setFont(new StandardFont(StandardFont.HELVETICA), 12);

 // Create second style - 12pt black Verdana (TrueType font)
 PDFStyle style2 = (PDFStyle)style1.clone();
 PDFFont ver = new OpenTypeFont(new FileInputStream("verdana.ttf"), 1);
 style2.setFont(ver, 12);

 // Draw some text. Use the whole page, less a 100 point margin.
 page.beginText(100,100, page.getWidth()-100, page.getHeight()-100);

 page.setStyle(style1);
 page.drawText("This text is in ");
 page.setStyle(style2);
 page.drawText("Verdana.\n");
 page.setStyle(style1);
 page.drawText("And this is Helvetica again.");
 page.endText(false);

	
 The final way to draw text is to use a LayoutBox class and the
 drawLayoutBox() method. This is the most powerful way
 to add text to a page, and has a number of advantages.
 See the LayoutBox class API documentation for more details. Here is
 a quick example that achieves a similar result to the example above.

 PDFPage page = pdf.newPage(PAGESIZE_A4); // 595 x 842 points

 // Create first style - 12pt black Helvetica
 PDFStyle style1 = new PDFStyle();
 style1.setFillColor(java.awt.Color.black);
 style1.setFont(new StandardFont(StandardFont.HELVETICA), 12);

 // Create second style - 12pt black Verdana (TrueType font)
 PDFStyle style2 = (PDFStyle)style1.clone();
 PDFFont ver = new OpenTypeFont(new FileInputStream("verdana.ttf"), 1);

 LayoutBox box = new LayoutBox(page.getWidth()-200);
 box.addText("This text is in ", style1, null);
 box.addText("Verdana.", style2, null);
 box.addLineBreak(style2);
 box.addText("And this is Helvetica again.", style1, null);

 page.drawLayoutBox(box, 100, page.getHeight()-100);

 4. Drawing Images and Canvases

 Bitmap images (represented by the PDFImage class) are drawn using
 the drawImage() method.

 PDFImage img = new PDFImage(new FileInputStream("mypicture.jpg"));
 page.drawImage(img, 100, 100, 200, 200);

 A PDFCanvas can be drawn almost exactly the same way, using the
 drawCanvas() method. A canvas can
 be created from another page, loaded from a file or created from scratch.
 A typical use of a canvas would be to draw a pattern created elsewhere, or
 perhaps a copy of an existing page, onto another page.

 PDFCanvas canvas = new PDFCanvas(template.getPage(0));
 newpdf.getPage(0).drawCanvas(0,0,pagewidth, pageheight);

 5. Rotate and Save/Restore

 At any point the page can be rotated around a point, using the rotate() method.
 This affects any further graphics operations to the page - drawing lines, text,
 images and so on. For example, to draw text at a 45° angle, you could do something like this:

 page.rotate(x, y, 45);
 page.drawText("Rotated", x, y);

 However, due to the vagaries of floating point arithmatic, if you want to rotate
 the page back to where it was, the results may not be identical. A much better
 way to do this is to wrap your rotation in a save()/restore() block.
 These methods save the current page state to a stack and then restore it. It's a
 very good idea to save the state and restore it before applying a rotation, like so:

 page.save();
 page.rotate(x, y, 45);
 page.drawText("Rotated", x, y);
 page.restore();

 7. Clipping

 Similar to the drawRectangle, drawCircle etc. methods above, the
 clipRectangle(), clipRoundedRectangle(),
 clipCircle(), clipEllipse() and
 clipPolygon() methods can be used to set the current
 clipping area on the page. Any future graphics or text operations will only
 take place inside that clipping area, which defaults to the entire page. For finer
 control, a path can be drawn using the path methods demonstrated above,
 and the pathClip() method used to set the clipping area.

 There is no way to enlarge the current clipping area, or to set a new clipping area
 without reference to the current one. However, as the current clipping area is part
 of the graphics state, it can (and should) be nested inside calls to save()
 and restore() to limit its effect.

Here's an example which draws an image on the page, clipped to a circle.

 page.save(); // Save the current clipping path - the whole page

 PDFImage img = new PDFImage(new FileInputStream("mypicture.jpg"));
 page.clipEllipse(100,100,300,300);
 page.drawImage(img, 100, 100, 300, 300);

 page.restore(); // Restore the previous clipping path

 8. Annotations

 In addition to all the methods above, which directly affect the contents of the
 page, Annotations can be added above the page via the getAnnotations() method
 to provide additional visual effects.
 This distinction is very important. As annotations are not part of the page, they are
 not affected by any calls to setUnits, rotate and similar methods,
 are not copied to a canvas when a new canvas is made using the PDFCanvas(PDFPage)
 constructor and so on. Annotations would typically be used to add a popup note, a hyperlink,
 a stamp or a form-field to a page. For example, here's how to add a hyperlink to a page:

 AnnotationLink link = new AnnotationLink();
 link.setRectangle(100, 100, 200, 200);
 link.setAction(PDFAction.goToURL("http://bfo.com"));

 page.getAnnotations().add(link);

	Since:
	1.0
	See Also:
	PDFStyle,
LayoutBox,
PDFCanvas,
PDF

	

	

Field Summary

Fields 	Modifier and Type	Field	Description
	static int	ORIGIN_PAGEBOTTOM	
Argument to setUnits(float, int) to measure the page from the bottom

	static int	ORIGIN_PAGELEFT	
Argument to setUnits(float, int) to measure the page from the left

	static int	ORIGIN_PAGERIGHT	
Argument to setUnits(float, int) to measure the page from the right

	static int	ORIGIN_PAGETOP	
Argument to setUnits(float, int) to measure the page from the top

	static float	UNITS_CM	
Argument to setUnits(float, int) to measure the page in centimeters. 1cm = 28.346457 points.

	static float	UNITS_INCHES	
Argument to setUnits(float, int) to measure the page in inches. 1" = 72 points

	static float	UNITS_MM	
Argument to setUnits(float, int) to measure the page in millimeters. 1mm = 2.8346457 points.

	static float	UNITS_PERCENT	
Argument to setUnits(float, int) to measure the page in percent.

	static float	UNITS_PICAS	
Argument to setUnits(float, int) to measure the page in picas. 1 pica = 12 points.

	static float	UNITS_POINTS	
Argument to setUnits(float, int) to measure the page in points (the default).

	

Constructor Summary

Constructors 	Constructor	Description
	PDFPage(int width,
 int height)	

 Create a new PDFPage object that's not connected to any document.

	PDFPage(String pagesize)	

 Create a new page of the specified page size that is not connected to any
 document.

	PDFPage(PDFPage page)	
Create a new PDFPage object that's a clone of the specified page but is
 not connected to any document.

	

Method Summary

All Methods Instance Methods Concrete Methods 	Modifier and Type	Method	Description
	void	addPropertyChangeListener(PropertyChangeListener listener)	
Add a PropertyChangeListener to this PDFPage.

	void	beginTag(String tag,
 Map<String,Object> atts)	
Open a structural tag on this page.

	void	beginText(float x1,
 float y1,
 float x2,
 float y2)	

 Begin a paragraph of text.

	void	beginTextLink(PDFAction action,
 PDFStyle linkstyle)	

 Start a "link" section in the text.

	void	clipCircle(float x,
 float y,
 float radius)	
Set the clipping area to a circle centered on x, y
 with a radius of radius.

	void	clipEllipse(float x1,
 float y1,
 float x2,
 float y2)	

 Set the clipping area to the ellipse inside the specified rectangle.

	void	clipPolygon(float[] x,
 float[] y)	

 Set the clipping area to a polygon.

	void	clipRectangle(float x1,
 float y1,
 float x2,
 float y2)	

 Set the clipping area to the rectangle which runs through
 the two corners x1,y1 and x2,y2.

	void	clipRoundedRectangle(float x1,
 float y1,
 float x2,
 float y2,
 float radius)	

 Set the clipping area to a rectangle with rounded corners which runs through
 the two corners x1,y1 and x2,y2.

	void	clipShape(Shape shape)	
Clip a Shape

	protected Object	clone()	
	float	continueText(float x1,
 float y1,
 float x2,
 float y2,
 PDFPage page)	

 As for beginText, but continue any text that overflowed from the
 specified page.

	Graphics2D	createGraphics(PDF pdf)	
Create a Graphics2D object which can be used to write to this page.

	float	discardText()	
Discard the paragraph of text.

	void	drawCanvas(PDFCanvas canvas,
 float x1,
 float y1,
 float x2,
 float y2)	
Draw a PDFCanvas at the specified position on the page.

	void	drawCircle(float x,
 float y,
 float radius)	
Draw a circle centered on x, y
 with a radius of radius.

	void	drawCircleArc(float x,
 float y,
 float radius,
 float start,
 float end)	
Draw an arc of the circle centered on x,y with the specified radius.

	void	drawEllipse(float x1,
 float y1,
 float x2,
 float y2)	

 Draw an ellipse inside the specified rectangle.

	void	drawEllipseArc(float x1,
 float y1,
 float x2,
 float y2,
 float start,
 float end)	

 Draw an ellipse arc inside the specified rectangle.

	void	drawGlyphVector(PDFGlyphVector vector,
 float x,
 float y)	
Draw a PDFGlyphVector onto the drawable.

	void	drawImage(PDFImage image,
 float x1,
 float y1,
 float x2,
 float y2)	
Draw a PDFImage at the specified position on the page

	void	drawLayoutBox(LayoutBox box,
 float x,
 float y)	
Draw a LayoutBox at the specified position on the page

	void	drawLine(float x1,
 float y1,
 float x2,
 float y2)	
Draw a line from x1,y1 to x2,y2.

	void	drawPolygon(float[] x,
 float[] y)	

 Draw a polygon.

	void	drawRectangle(float x1,
 float y1,
 float x2,
 float y2)	

 Draw a rectangle through the two corners x1,y1 and x2,y2.

	void	drawRoundedRectangle(float x1,
 float y1,
 float x2,
 float y2,
 float radius)	

 Draw a rectangle with rounded corners through the two corners
 x1,y1 and x2,y2.

	void	drawShape(Shape shape)	
Draw a Shape
 If the fill color is specified the Shape will be closed
 automatically if it isn't already.

	float	drawText(String text)	

 Draw a paragraph of text in the current style.

	void	drawText(String text,
 float x,
 float y)	

 Draw a line of text at the specified position.

	void	drawTextLink(String text,
 float x,
 float y,
 PDFAction action)	

 Draw a line of text at a the specified position, and set it to
 link to the specified action.

	void	endTag()	
Close a structural tag on this page.

	float	endText(boolean justifylast)	
End the paragraph of text.

	PDFAnnotation[]	endTextLink()	

 End the "link" section in the text, analogous to the tag
 in HTML.

	void	flush()	

 Flush any operations that have been written to the page.

	PDFAction	getAction(Event event)	

 Get the action that's perform when this page is displayed.

	List<PDFAnnotation>	getAnnotations()	
Return a List of the PDFAnnotation objects on this
 page.

	Collection<EmbeddedFile>	getAssociatedFiles()	
Return the list of embedded files assocatiated with this PDFAnnotation.

	float[]	getBox(String name)	

 Return the specified Page Box - see the setBox method
 for a description of Page Boxes.

	ColorSpace	getDefaultColorSpace(int components)	

 Return the ColorSpace used by this page to anchor device-dependent
 colors to a profile.

	DocumentPart	getDocumentPart()	
Return the DocumentPart this page belongs to, or null if it doesn't belong to any

	int	getHeight()	
Return the height of this page in points.

	Reader	getMetaData()	

 Return any XML metadata associated with this object.

	int	getPageNumber()	
Return the page number of this page in it's PDF, or zero if the page
 is not part of a PDF document.

	int	getPageOrientation()	
Get the current page orientation.

	PDF	getPDF()	
Return the PDF this page is part of, or null if it hasn't been
 attached to a PDF yet.

	PDFStyle	getStyle()	
Return the style used on the page

	PDFImage	getThumbnail()	
Return the thumbnail image on the page, as set by setThumbnail(org.faceless.pdf2.PDFImage).

	Object	getUserData(String key)	
Return a property previously set on the PDF with the putUserData() method

	float	getUserUnit()	
Return the UserUnit, as set by setUserUnit(float)

	int	getWidth()	
Return the width of this page in points.

	XMP	getXMP()	
Return an XMP Metadata object representing any XML metadata associated with this object

	boolean	pathArc(float width,
 float height,
 float start,
 float end)	
Continue the open path in an arc to the specified position.

	boolean	pathBezier(float cx1,
 float cy1,
 float cx2,
 float cy2,
 float x,
 float y)	
Continue the open path in a bezier curve to the specified position.

	void	pathCancel()	
Cancel the current path

	void	pathClip()	

 Close the path and set the "clipping area" of the page to be the intersection of
 the current clipping area and the shape defined by this path.

	void	pathClipAndPaint()	
Close and paint the path as described in pathPaint(), then set the
 clipping area to the same are as described in pathClip()

	void	pathClose()	
Close the path by drawing a straight line back to it's beginning

	boolean	pathLine(float x,
 float y)	
Continue the open path in a straight line to the specified position.

	void	pathMove(float x,
 float y)	
Start a new path at the specified position.

	void	pathPaint()	
Close and paint the path.

	boolean	pathShape(Shape shape)	
Add the path specified by a Shape to the Page

	void	putLiteral(String key,
 String tokens)	
Put a literal token sequnce.

	void	putUserData(String key,
 Object value)	
Set a custom property on the PDF.

	void	rawWrite(String data)	
Write raw PDF commands to the page.

	void	removePropertyChangeListener(PropertyChangeListener listener)	
Remove a previously added PropertyChangeListener from this PDFPage.

	void	restore()	
Restore the state that was saved with the last call to save()

	void	rotate(float x,
 float y,
 double angle)	

 Rotate the page.

	void	save()	

 Save the state of this page.

	void	seekEnd()	

 Seek to the end of the page.

	void	seekStart()	

 Seek to the start of the page.

	void	setAction(Event event,
 PDFAction action)	

 Set the action to perform when the specified event occurs.

	void	setBox(String name,
 float x1,
 float y1,
 float x2,
 float y2)	

 Set one of the various Page Boxes that control how the page is printed
 and displayed.

	void	setDefaultColorSpace(int components,
 ColorSpace cs)	
Set the ColorSpace to use to anchor device-dependent colors on this
 page, as described by getColorSpace(java.lang.String).

	void	setMeasurementUnits(float x1,
 float y1,
 float x2,
 float y2,
 String scale)	
Set the natural scale for measurements in the specified area of the page.

	void	setMetaData(String xmldata)	
Set the XML metadata associated with this object.

	void	setPageOrientation(int degrees)	
Set the orientation of the page.

	void	setStyle(PDFStyle style)	
Set the style to use for future drawing operations on this page

	void	setThumbnail(PDFImage image)	
Set the embedded page thumbnail.

	void	setTransition(String style,
 float displaytime,
 float transitiontime)	
Set a transition from this page to the next page, to allow the pages to be
 displayed as part of a presentation.

	void	setUnits(float units,
 int origin)	
Set the coordinates of the current page.

	void	setUserUnit(float unit)	

 Set the "User Unit" on the PDF.

	String	toString()	
	void	transform(double a,
 double b,
 double c,
 double d,
 double e,
 double f)	
Concatenate the specified AffineTransform to the page's current
 transform.

	void	transform(AffineTransform transform)	
Concatenate the specified AffineTransform to the page's current
 transform.

	

Methods inherited from class java.lang.Object

equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

	

	

Field Detail

	
UNITS_INCHES

public static final float UNITS_INCHES

Argument to setUnits(float, int) to measure the page in inches. 1" = 72 points

	See Also:
	Constant Field Values

	
UNITS_CM

public static final float UNITS_CM

Argument to setUnits(float, int) to measure the page in centimeters. 1cm = 28.346457 points.

	See Also:
	Constant Field Values

	
UNITS_MM

public static final float UNITS_MM

Argument to setUnits(float, int) to measure the page in millimeters. 1mm = 2.8346457 points.

	See Also:
	Constant Field Values

	
UNITS_PICAS

public static final float UNITS_PICAS

Argument to setUnits(float, int) to measure the page in picas. 1 pica = 12 points.

	See Also:
	Constant Field Values

	
UNITS_PERCENT

public static final float UNITS_PERCENT

Argument to setUnits(float, int) to measure the page in percent. Unlike
 the other measurements, this can result in changes to the aspect ratio.
 (10% of the page width is usually less than 10% of the page height).

	See Also:
	Constant Field Values

	
UNITS_POINTS

public static final float UNITS_POINTS

Argument to setUnits(float, int) to measure the page in points (the default).
 One point is 1/72nd of an inch.

	See Also:
	Constant Field Values

	
ORIGIN_PAGEBOTTOM

public static final int ORIGIN_PAGEBOTTOM

Argument to setUnits(float, int) to measure the page from the bottom

	See Also:
	Constant Field Values

	
ORIGIN_PAGETOP

public static final int ORIGIN_PAGETOP

Argument to setUnits(float, int) to measure the page from the top

	See Also:
	Constant Field Values

	
ORIGIN_PAGELEFT

public static final int ORIGIN_PAGELEFT

Argument to setUnits(float, int) to measure the page from the left

	See Also:
	Constant Field Values

	
ORIGIN_PAGERIGHT

public static final int ORIGIN_PAGERIGHT

Argument to setUnits(float, int) to measure the page from the right

	See Also:
	Constant Field Values

	

Constructor Detail

	
PDFPage

public PDFPage(int width,
 int height)

 Create a new PDFPage object that's not connected to any document.
 In most cases it will be more convenient to call the PDF.newPage(int,int)
 method, which creates a new page and adds it to a PDF.

 The parameters are integers for API compatibility only. If required you can create pages
 sized to a fraction of a point with the PDFPage(String) constructor.

	Since:
	2.0

	
PDFPage

public PDFPage(String pagesize)

 Create a new page of the specified page size that is not connected to any
 document. In most cases it will be more convenient to call PDF.newPage(String),
 which create the page and links it to the PDF.

 The size is specified as a string of the form "WxHU", where W is the width
 of the page, H is the height of the page, and U is an optional units
 specifier - it may be "mm", "cm" or "in", and if it's not specified it's assumed
 to be points. The resulting page size is rounded to the nearest integer unless the
 units are specified as points (eg. 595.5x842 - fractional sizes added in 2.2.3)

 For convenience we've defined several standard sizes that you can pass in,
 like PDF.PAGESIZE_A4, PDF.PAGESIZE_A4_LANDSCAPE, PDF.PAGESIZE_LETTER,
 PDF.PAGESIZE_LETTER_LANDSCAPE and so on.

 Since 2.2.3 you can also pass in a String containing the common name of the paper size,
 optionally with a "-landscape" suffix, eg "A4", "Letter", "A2-landscape", "DL" and so on.
 All ISO sizes and most US and JIS paper (and some envelope) sizes are recognised.

 Example values include "210x297mm", "595x842" or "A4", which would both produce
 an A4 page, and "8.5x11in", "612x792" or "Letter", which would both produce a US Letter
 page.

	Parameters:
	pagesize - the size of the page to create
	Throws:
	IllegalArgumentException - if the specified page size cannot be parsed

	
PDFPage

public PDFPage(PDFPage page)

Create a new PDFPage object that's a clone of the specified page but is
 not connected to any document. In most cases it will be more convenient to call
 the PDF.newPage(PDFPage) method, which creates a new page and adds it
 to a PDF.

	Since:
	2.0

	

Method Detail

	
getUserUnit

public float getUserUnit()

Return the UserUnit, as set by setUserUnit(float)

	Since:
	2.22

	
setUserUnit

public void setUserUnit(float unit)

 Set the "User Unit" on the PDF. This is a new feature added in PDF 1.6 / Acrobat 5.0
 to get around the self-imposed limitation in Acrobat on maximum page size, which
 is 14400x14400 units. By default a unit is a point, but this method can be used
 to change this - for example, setUserUnit(10) means a page size
 of 72x72 points is actually treated as 720x720 points by Acrobat.

 This scaling also applies to any PDFCanvas object drawn to the page, and any
 annotation or hyperlink coordinates. Moving an annotation from a page with
 UserUnits set to 2 to another page with UserUnits set to the default value of 1,
 will effectively halve the size of the annotation.

 This method is very similar to the setUnits(float, int) method, except that the
 user scale is stored with the PDF.

	Since:
	2.22

	
setPageOrientation

public void setPageOrientation(int degrees)

Set the orientation of the page. This method can be used to rotate
 the page clockwise or counter-clockwise by 90 degrees. Typically
 the value passed in will be getPageOrientation() +/- 90,
 to rotate the page 90 degrees clockwise or anti-clockwise.

	Parameters:
	degrees - one of 0, 90, 180 or 270
	Since:
	2.8.3

	
getPageOrientation

public int getPageOrientation()

Get the current page orientation. Although this value can give some indication
 of whether the page is portrait, landscape or reverse-landscape, it's not the
 only way to determine if a page is in that position. Typically the value for
 this method is used as a base for the parameter to setPageOrientation(int).

	Returns:
	the page orientation - 0, 90, 180 or 270
	Since:
	2.8.3

	
getPDF

public PDF getPDF()

Return the PDF this page is part of, or null if it hasn't been
 attached to a PDF yet.

	Since:
	2.8

	
flush

public void flush()

 Flush any operations that have been written to the page. Pages must be flushed before
 they can be cloned (by calling the PDFCanvas(PDFPage) or
 PDFPage(PDFPage) constructors).

 Pages are considered "flushed" when they are loaded, and only require flushing after an
 action is performed on its contents, such as calling any of the draw... methods.
 Adding or removing annotations is not considered to alter the page contents.

 After a page has been flushed, it can still be written to without any performance
 penalty (although calling flush too often will result in larger files, so don't
 overdo it).

 It is a good idea to flush a PDFPage after you've finished modifying it, as the
 library can manage it more efficiently if it knows you're not expecting to
 write to it again. In particular, a flushed page may be temporarily written to disk by
 a Cache to free up memory.

	Specified by:
	flush in interface PDFDrawable
	Throws:
	IllegalStateException - if the page is incomplete - you have an open path, a
 save() without a matching restore(), or a beginText
 without an endText
	Since:
	2.2

	
seekStart

public void seekStart()

 Seek to the start of the page. Any items drawn after this call
 will be drawn before any content already existing on the page, so
 appearing under the current content.

 Note that if the document clears the page before writing, it will
 overwrite any content written after a seekStart

	Since:
	1.1.12

	
seekEnd

public void seekEnd()

 Seek to the end of the page. Any items drawn after this call
 will be drawn after any content already existing on the page, so
 appearing on top of the current content. This is the default
 position.

	Since:
	1.1.12

	
setBox

public void setBox(String name,
 float x1,
 float y1,
 float x2,
 float y2)

 Set one of the various Page Boxes that control how the page is printed
 and displayed. The "name" parameter specifies the box, and may be one of
 "Media", "Crop", "Art", "Bleed" or "Trim". The MediaBox relates to the
 size of the physical page, and is set in the PDFPage constructor. Consequently
 you really don't want to set this unless you know exactly what you're doing.
 The other boxes can be set and reset as many times as required. To remove a
 previously defined box, set all four values to 0.

 Note that like getBox(java.lang.String), box coordinates are relative to the
 MediaBox (so, for example, when setting the MediaBox then the CropBox,
 the CropBox should be relative to the new MediaBox rather than the original).

	Parameters:
	name - the name of the page box to set
	x1 - the left-most X co-ordinate of the box
	y1 - the bottom-most Y co-ordinate of the box
	x2 - the right-most X co-ordinate of the box
	y2 - the top-most Y co-ordinate of the box
	Since:
	2.0.7

	
getBox

public float[] getBox(String name)

 Return the specified Page Box - see the setBox method
 for a description of Page Boxes. If the requested box isn't specified by
 the page object, this method returns null. Note that since 2.7.3, values are always
 relative to the MediaBox, which is always anchored at (0,0). The raw
 box values can be retrieved by prefixing the argument with "Raw", eg "RawMediaBox".

 Since 2.8 this method accepts "ViewBox" or "PrintBox" as arguments as well. The
 method will then return the appropriate box for viewing or printing the PDF, which
 is typically the CropBox if specified or the MediaBox if not - although this can
 be changed with the view.area and print.area settings in
 PDF.setOption().

	Parameters:
	name - the name of the page box to return.
	Returns:
	an array of floats [x1,y1,x2,y2] describing the corners of the requested page box, or null if no such box is defined
	Since:
	2.0.7

	
getPageNumber

public int getPageNumber()

Return the page number of this page in it's PDF, or zero if the page
 is not part of a PDF document. Note the page number starts at one, which
 is not so useful. Given all this method does internally is call
 pdf.getPages().indexOf(page) + 1 you might consider doing that instead.

	Returns:
	the page number of this page, from 1 to PDF.getNumberOfPages()

	
setUnits

public void setUnits(float units,
 int origin)

Set the coordinates of the current page. When a new page is created it's measured
 in points from the bottom-left of the page. This can be changed as many times
 as necessary by calling this method.

	Parameters:
	units - the units to measure it in. Can be UNITS_POINTS (the default),
 UNITS_INCHES, UNITS_CM, UNITS_MM, UNITS_PICAS or UNITS_PERCENT
	origin - which corner of the page is nearest to (0,0). A logical-or
 of ORIGIN_PAGETOP, ORIGIN_PAGELEFT, ORIGIN_PAGERIGHT and ORIGIN_PAGEBOTTOM
	Since:
	2.0 - this method replaces the setCanvas method in versions prior to 2.0
	See Also:
	setUserUnit(float)

	
getDefaultColorSpace

public ColorSpace getDefaultColorSpace(int components)

 Return the ColorSpace used by this page to anchor device-dependent
 colors to a profile. For example, the ColorSpace returned by
 getDefaultColorSpace(3) is used by all "Device RGB" colors
 on the page, effectively turning them into calibrated colors.

 The PDF API automatically sets a calibrated sRGB ColorSpace as the
 ColorSpace for all DeviceRGB content on the page. Unlike the use of
 "Output Intents" on the OutputProfile class, multiple ColorSpaces
 can be set, one each for Gray, RGB, and CMYK. This is a cheap way to
 convert pages containing both DeviceRGB and DeviceCMYK to using calibrated
 colors.

	Specified by:
	getDefaultColorSpace in interface PDFDrawable
	Parameters:
	components - identifies the Default ColorSpace we're requesting - valid
 values are 1 for Gray, 3 for RGB or 4 for CMYK.
	Returns:
	the Default ColorSpace requested, or null if none is set.
	Since:
	2.25

	
setDefaultColorSpace

public void setDefaultColorSpace(int components,
 ColorSpace cs)

Set the ColorSpace to use to anchor device-dependent colors on this
 page, as described by getColorSpace(java.lang.String).

	Specified by:
	setDefaultColorSpace in interface PDFDrawable
	Parameters:
	components - identifies the Default ColorSpace to set - valid values are
 1 for Gray, 3 for RGB or 4 for CMYK.
	cs - the ColorSpace to set, which must be either null (to delete the existing value) or a ColorSpace of a type that matches the "components" parameter.

	
setMetaData

public void setMetaData(String xmldata)

Set the XML metadata associated with this object.
 Since 2.26 this method
 calls getXMP().read(new StringReader(xmldata == null ? "" : xmldata)).
 We strongly recommend using the getXMP() method and modifying the XMP directly
 rather than using this method.

	Specified by:
	setMetaData in interface PDFDrawable
	Parameters:
	xmldata - the XML data to embed into the document, or null to clear any existing metadata. No validation is performed on this input.
	Since:
	1.1.12
	See Also:
	getXMP()

	
getMetaData

public Reader getMetaData()
 throws IOException

 Return any XML metadata associated with this object.

 Since 2.26 this simply returns getXMP().isEmpty() ? null : new StringReader(getXMP().toString()).
 It is strongly recommended that any code migrates to using the getXMP() method.

 Since 2.24.3, the returned type is guaranteed to hava a toString() method that
 will return the Metadata as a String.

	Returns:
	a Reader containing the source of the XML or null if no metadata is available.
	Throws:
	IOException - if the metadata can't be extracted
	Since:
	1.1.12

	
getXMP

public XMP getXMP()

Return an XMP Metadata object representing any XML metadata associated with this object

	Returns:
	the XMP, which may be empty or invalid but will never be null
	Since:
	2.26

	
setAction

public void setAction(Event event,
 PDFAction action)

 Set the action to perform when the specified event occurs. Events
 that occur on a page are limited to open and close, which are run
 everytime the page is displayed on screen.

	Parameters:
	event - one of Event.OPEN or Event.CLOSE.
	action - the action to run each time this page is displayed, or
 null to clear the action
	Since:
	2.0
	See Also:
	getAction(org.faceless.pdf2.Event),
PDF.setAction(org.faceless.pdf2.Event, org.faceless.pdf2.PDFAction),
AnnotationLink.setAction(org.faceless.pdf2.PDFAction),
FormElement.setAction(org.faceless.pdf2.Event, org.faceless.pdf2.PDFAction)

	
getAction

public PDFAction getAction(Event event)

 Get the action that's perform when this page is displayed. This is
 the value set by the setAction(org.faceless.pdf2.Event, org.faceless.pdf2.PDFAction) method.

	Returns:
	the action performed whenever the specified event occurs,
 or null if no action is performed for this event.
	Since:
	2.0
	See Also:
	setAction(org.faceless.pdf2.Event, org.faceless.pdf2.PDFAction),
PDF.getAction(org.faceless.pdf2.Event),
AnnotationLink.getAction(),
FormElement.getAction(org.faceless.pdf2.Event)

	
rawWrite

public void rawWrite(String data)

Write raw PDF commands to the page. This is for advanced users
 only, but does allow those intimately familiar with the PDF specification
 to perform some of the more esoteric actions that aren't directly
 supported by the PDF library. Using this method it is easy to create
 invalid PDF documents, so use with caution.

	Specified by:
	rawWrite in interface PDFDrawable
	Parameters:
	data - the PDF operations to write to the stream, for instance "/Perceptual ri" to set the RenderingIntent. Line breaks will be added before and after the specified string.
	Since:
	2.1.2

	
getWidth

public int getWidth()

Return the width of this page in points. For API compatibility
 reasons only these are rounded to the nearest point, although it
 is possible to have pages sized to a fraction of a point. If more
 accuracy is needed you can get the exact page dimensions by calling the
 getBox(java.lang.String) method to get the MediaBox.

	Since:
	1.0

	
getHeight

public int getHeight()

Return the height of this page in points. For API compatibility
 reasons only these are rounded to the nearest point, although it
 is possible to have pages sized to a fraction of a point. If more
 accuracy is needed you can get the exact page dimensions by calling the
 getBox(java.lang.String) method to get the MediaBox.

	Since:
	1.0

	
setStyle

public void setStyle(PDFStyle style)

Set the style to use for future drawing operations on this page

	Specified by:
	setStyle in interface PDFDrawable
	Since:
	1.0

	
getStyle

public PDFStyle getStyle()

Return the style used on the page

	Since:
	1.0

	
drawLine

public void drawLine(float x1,
 float y1,
 float x2,
 float y2)

Draw a line from x1,y1 to x2,y2.

	Specified by:
	drawLine in interface PDFDrawable
	Parameters:
	x1 - the X co-ordinate of the start of the line
	y1 - the Y co-ordinate of the start of the line
	x2 - the X co-ordinate of the end of the line
	y2 - the Y co-ordinate of the end of the line
	Since:
	1.0

	
drawRectangle

public void drawRectangle(float x1,
 float y1,
 float x2,
 float y2)

 Draw a rectangle through the two corners x1,y1 and x2,y2.
 Whether the rectangle is drawn as an outline or filled depends on the
 LineColor and FillColor of the current style (see the
 pathPaint() method for more information).

	Specified by:
	drawRectangle in interface PDFDrawable
	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle
	Since:
	1.0

	
drawRoundedRectangle

public void drawRoundedRectangle(float x1,
 float y1,
 float x2,
 float y2,
 float radius)

 Draw a rectangle with rounded corners through the two corners
 x1,y1 and x2,y2.
 Whether the rectangle is drawn as an outline or filled depends on the
 LineColor and FillColor of the current style (see the
 pathPaint() method for more information).

	Specified by:
	drawRoundedRectangle in interface PDFDrawable
	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle
	radius - The radius of the circle that is used to round the corners. A value of zero give identical results to drawRectangle(float, float, float, float)
	Since:
	1.1

	
drawPolygon

public void drawPolygon(float[] x,
 float[] y)

 Draw a polygon. The X and Y co-ordinates of the vertices are
 in the supplied arrays. Whether the polygon is drawn as an
 outline or filled depends on the LineColor and
 FillColor of the current style (see the
 pathPaint() method for more information).

 If the fill color is specified the polygon will be closed
 automatically if it isn't already.

	Specified by:
	drawPolygon in interface PDFDrawable
	Parameters:
	x - the X co-ordinates of the vertices
	y - the Y co-ordinates of the vertices
	Since:
	1.0

	
drawCircle

public void drawCircle(float x,
 float y,
 float radius)

Draw a circle centered on x, y
 with a radius of radius. A more convenient way to
 draw circles than drawEllipse

	Specified by:
	drawCircle in interface PDFDrawable
	Parameters:
	x - the X co-ordinate of the center of the circle
	y - the Y co-ordinate of the center of the circle
	radius - the radius of the circle
	Since:
	1.1

	
drawEllipse

public void drawEllipse(float x1,
 float y1,
 float x2,
 float y2)

 Draw an ellipse inside the specified rectangle. The top and sides
 of the ellipse will touch the edges of the rectangle drawn between
 x1,y1 and x2,y2.

 Whether the ellipse is drawn as an outline or filled depends on the
 LineColor and FillColor of the current style
 (see the pathPaint() method for more information).

	Specified by:
	drawEllipse in interface PDFDrawable
	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle
	Since:
	1.0

	
drawEllipseArc

public void drawEllipseArc(float x1,
 float y1,
 float x2,
 float y2,
 float start,
 float end)

 Draw an ellipse arc inside the specified rectangle. The same as
 drawEllipse, but allows you to specify a start and end angle.
 If a FillColor is specified, the arc will be closed with a straight line.

	Specified by:
	drawEllipseArc in interface PDFDrawable
	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle
	start - the start angle of the arc, in degrees clockwise from 12 o'clock
	end - the end angle of the arc, in degrees clockwise from 12 o'clock
	Since:
	1.1

	
drawCircleArc

public void drawCircleArc(float x,
 float y,
 float radius,
 float start,
 float end)

Draw an arc of the circle centered on x,y with the specified radius.
 A more convenient way to draw circular arcs than drawEllipseArc
 If a FillColor is specified, the arc will be closed with a straight line.

	Specified by:
	drawCircleArc in interface PDFDrawable
	Parameters:
	x - the X co-ordinate of the center of the circle
	y - the Y co-ordinate of the center of the circle
	radius - the radius of the circle
	start - the start angle of the arc, in degrees clockwise from 12 o'clock
	end - the end angle of the arc, in degrees clockwise from 12 o'clock
	Since:
	1.1

	
drawShape

public void drawShape(Shape shape)

Draw a Shape
 If the fill color is specified the Shape will be closed
 automatically if it isn't already.

	Specified by:
	drawShape in interface PDFDrawable
	Since:
	2.16

	
clipShape

public void clipShape(Shape shape)

Clip a Shape

	Specified by:
	clipShape in interface PDFDrawable
	Since:
	2.16

	
pathShape

public boolean pathShape(Shape shape)

Add the path specified by a Shape to the Page

	Specified by:
	pathShape in interface PDFDrawable
	Parameters:
	shape - the shape
	Returns:
	true if any sections were drawn on the path
	Since:
	2.16

	
pathMove

public void pathMove(float x,
 float y)

Start a new path at the specified position. If a path has
 already been started, move the cursor without drawing a line.

	Specified by:
	pathMove in interface PDFDrawable
	Parameters:
	x - the X co-ordinate to move to
	y - the Y co-ordinate to move to
	Since:
	1.0

	
pathLine

public boolean pathLine(float x,
 float y)

Continue the open path in a straight line to the specified position.

	Specified by:
	pathLine in interface PDFDrawable
	Parameters:
	x - the X co-ordinate to move to
	y - the Y co-ordinate to move to
	Returns:
	true if any sections were drawn in the path
	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)
	Since:
	1.0

	
pathBezier

public boolean pathBezier(float cx1,
 float cy1,
 float cx2,
 float cy2,
 float x,
 float y)

Continue the open path in a bezier curve to the specified position.

	Specified by:
	pathBezier in interface PDFDrawable
	Parameters:
	cx1 - the X co-ordinate of the first control point for the curve
	cy1 - the Y co-ordinate of the first control point for the curve
	cx2 - the X co-ordinate of the second control point for the curve
	cy2 - the Y co-ordinate of the second control point for the curve
	x - the X co-ordinate to move to
	y - the Y co-ordinate to move to
	Returns:
	true if any sections were drawn in the path
	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)
	Since:
	1.0

	
pathArc

public boolean pathArc(float width,
 float height,
 float start,
 float end)

Continue the open path in an arc to the specified position.

	Specified by:
	pathArc in interface PDFDrawable
	Parameters:
	width - the width of the ellipse to take the arc from
	height - the height of the ellipse to take the arc from
	start - the start angle of the arc, in degrees clockwise from 12 o'clock
	end - the end angle of the arc, in degrees clockwise from 12 o'clock
	Returns:
	true if any sections were drawn in the path
	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)
	Since:
	1.1

	
pathClose

public void pathClose()

Close the path by drawing a straight line back to it's beginning

	Specified by:
	pathClose in interface PDFDrawable
	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)
	Since:
	1.0

	
pathCancel

public void pathCancel()

Cancel the current path

	Specified by:
	pathCancel in interface PDFDrawable
	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)
	Since:
	1.0

	
pathClip

public void pathClip()

 Close the path and set the "clipping area" of the page to be the intersection of
 the current clipping area and the shape defined by this path.
 Any future graphics or text operations on the page are only
 applied within this area.

 There is no way to enlarge the current clipping area, or to set
 a new clipping area without reference to the current one. However,
 as the current clipping area is part of the graphics state, it
 can and should be nested inside calls to save() and
 restore() to limit its effect.

	Specified by:
	pathClip in interface PDFDrawable
	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)
	Since:
	1.1.5

	
pathPaint

public void pathPaint()

Close and paint the path. What this actually does depends on the currently
 applied PDFStyle
 	If the style has a LineColor specified but no FillColor, "stroke"
 the path by drawing it as an outline in the current line color
	If the style has a FillColor specified but no LineColor, call
 pathClose() and "fill" the path with the current fill color
	If the style has both a FillColor and a LineColor, call pathClose(), "fill" the path with the current fill color then "stroke"
 the path with the current line color.

	Specified by:
	pathPaint in interface PDFDrawable
	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float),
 or if neither a fill nor line color has been specified.
	Since:
	1.0

	
pathClipAndPaint

public void pathClipAndPaint()

Close and paint the path as described in pathPaint(), then set the
 clipping area to the same are as described in pathClip()

	Specified by:
	pathClipAndPaint in interface PDFDrawable
	Since:
	1.1.10

	
clipRoundedRectangle

public void clipRoundedRectangle(float x1,
 float y1,
 float x2,
 float y2,
 float radius)

 Set the clipping area to a rectangle with rounded corners which runs through
 the two corners x1,y1 and x2,y2.

	Specified by:
	clipRoundedRectangle in interface PDFDrawable
	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle
	radius - The radius of the circle that is used to round the corners. A value of zero give identical results to drawRectangle(float, float, float, float)
	Since:
	1.1.5

	
clipPolygon

public void clipPolygon(float[] x,
 float[] y)

 Set the clipping area to a polygon. The X and Y co-ordinates
 of the vertices are in the supplied arrays.

	Specified by:
	clipPolygon in interface PDFDrawable
	Parameters:
	x - the X co-ordinates of the vertices
	y - the Y co-ordinates of the vertices
	Since:
	1.1.5

	
clipRectangle

public void clipRectangle(float x1,
 float y1,
 float x2,
 float y2)

 Set the clipping area to the rectangle which runs through
 the two corners x1,y1 and x2,y2.

	Specified by:
	clipRectangle in interface PDFDrawable
	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle
	Since:
	1.1.5

	
clipEllipse

public void clipEllipse(float x1,
 float y1,
 float x2,
 float y2)

 Set the clipping area to the ellipse inside the specified rectangle.
 The top and sides of the ellipse will touch the edges of the rectangle
 drawn between x1,y1 and x2,y2.

	Specified by:
	clipEllipse in interface PDFDrawable
	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle
	Since:
	1.1.5

	
clipCircle

public void clipCircle(float x,
 float y,
 float radius)

Set the clipping area to a circle centered on x, y
 with a radius of radius.

	Specified by:
	clipCircle in interface PDFDrawable
	Parameters:
	x - the X co-ordinate of the center of the circle
	y - the Y co-ordinate of the center of the circle
	radius - the radius of the circle
	Since:
	1.1.5

	
drawLayoutBox

public void drawLayoutBox(LayoutBox box,
 float x,
 float y)

Draw a LayoutBox at the specified position on the page

	Specified by:
	drawLayoutBox in interface PDFDrawable
	Parameters:
	box - the LayoutBox to draw
	x - the X co-ordinate of the left hand side of the box
	y - the Y co-ordinate of the top side of the box
	Since:
	1.2

	
drawGlyphVector

public void drawGlyphVector(PDFGlyphVector vector,
 float x,
 float y)

Description copied from interface: PDFDrawable

Draw a PDFGlyphVector onto the drawable. See that class for
 an example of how to use this method.

	Specified by:
	drawGlyphVector in interface PDFDrawable
	Parameters:
	vector - the PDFGlyphVector to draw
	x - the X co-ordinate to position the left edge of the PDFGlyphVector
	y - the Y co-ordinate to position the baseline of the PDFGlyphVector
	See Also:
	PDFGlyphVector,
PDFStyle.createGlyphVector(java.lang.String, java.util.Locale)

	
drawImage

public void drawImage(PDFImage image,
 float x1,
 float y1,
 float x2,
 float y2)

Draw a PDFImage at the specified position on the page

	Specified by:
	drawImage in interface PDFDrawable
	Parameters:
	image - the image to draw
	x1 - the X co-ordinate of the left hand side of the image
	y1 - the Y co-ordinate of the bottom side of the image
	x2 - the X co-ordinate of the right hand side of the image
	y2 - the Y co-ordinate of the top side of the image
	Since:
	1.0

	
drawCanvas

public void drawCanvas(PDFCanvas canvas,
 float x1,
 float y1,
 float x2,
 float y2)

Draw a PDFCanvas at the specified position on the page.

	Specified by:
	drawCanvas in interface PDFDrawable
	Parameters:
	canvas - the canvas to draw
	x1 - the X co-ordinate of the left hand side of the image
	y1 - the Y co-ordinate of the bottom side of the image
	x2 - the X co-ordinate of the right hand side of the image
	y2 - the Y co-ordinate of the top side of the image
	Since:
	2.0

	
save

public void save()

 Save the state of this page. This takes a snapshot of the currently applied
 style, position, clipping area and any rotation/translation/scaling that has
 been applied, which can be later restored with a call to restore().

 Calls to save can be nested, but note that for most PDF viewers
 it is an error to save the page state but not restore it.

	Specified by:
	save in interface PDFDrawable
	Throws:
	IllegalStateException - if a save is performed with an open path or if
 saves are nested more than 28 deep.
	Since:
	1.0

	
restore

public void restore()

Restore the state that was saved with the last call to save()

	Specified by:
	restore in interface PDFDrawable
	Throws:
	IllegalStateException - if there is no previously saved state
	Since:
	1.0

	
rotate

public void rotate(float x,
 float y,
 double angle)

 Rotate the page. All future actions, like drawing lines or text,
 will be rotated around the specified point by the specified angle.

	Specified by:
	rotate in interface PDFDrawable
	Parameters:
	x - the X co-ordinate to rotate the page around
	y - the Y co-ordinate to rotate the page around
	angle - The number of degrees clockwise to rotate the page.

	
transform

public void transform(AffineTransform transform)

Concatenate the specified AffineTransform to the page's current
 transform. All future actions, like drawing lines or text,
 will transformed with this matrix.
 Note that the results for this operation will be incorrect
 if the setUnits() method has been called
 with ORIGIN_PAGEBOTTOM or ORIGIN_PAGERIGHT

	Specified by:
	transform in interface PDFDrawable
	Since:
	2.16.1

	
transform

public void transform(double a,
 double b,
 double c,
 double d,
 double e,
 double f)

Concatenate the specified AffineTransform to the page's current
 transform. All future actions, like drawing lines or text,
 will transformed with this matrix.
 The six arguments are the same 6 arguments
 passed in to the AffineTransform constructor, in the same same
 order.

 Note that the results for this operation will be incorrect
 if the setUnits() method has been called
 with ORIGIN_PAGEBOTTOM or ORIGIN_PAGERIGHT

	Specified by:
	transform in interface PDFDrawable
	Since:
	2.16.1

	
getAnnotations

public List<PDFAnnotation> getAnnotations()

Return a List of the PDFAnnotation objects on this
 page. The list may be manipulated using the standard List methods such
 as List.add(E), List.remove(java.lang.Object) and so on. If the page has
 no annotations an empty list is returned.

	Since:
	2.0 (although this method existed in prior versions, it returned an Array)

	
setTransition

public void setTransition(String style,
 float displaytime,
 float transitiontime)

Set a transition from this page to the next page, to allow the pages to be
 displayed as part of a presentation. Valid values for style are:

 	None	No transition is used (the default)
	Replace	The current page is replaced with the new page. transitiontime is ignored
	SplitHorizOut	Two lines sweep horizontally across the screen outward from the center of the page
	SplitHorizIn	Two lines sweep horizontally across the screen inwards from the edge of the page
	SplitVertOut	Two lines sweep vertically across the screen outward from the center of the page
	SplitVertIn	Two lines sweep vertically across the screen inwards from the edge of the page
	BlindsHoriz	Multiple lines sweep down across the page
	BlindsVert	Multiple lines sweep left-to-right across the page
	BoxIn	A box sweeps inwards from the edge of the page
	BoxOut	A box sweeps outwards from the center of the page
	WipeLeftToRight	A single line sweeps across the page from left to right
	WipeRightToLeft	A single line sweeps across the page from right to left
	WipeTopToBottom	A single line sweeps across the page from top to bottom
	WipeBottomToTop	A single line sweeps across the page from bottom to top
	Dissolve	The old page dissolves gradually to reveal the new one
	GlitterLeftToRight	The old page dissolves in a band running from left to right across the page
	GlitterTopToBottom	The old page dissolves in a band running from top to bottom across the page
	GlitterDiagonal	The old page dissolves in a band running from top-left to bottom-right across the page

	Parameters:
	style - the transition style as defined above
	displaytime - the amount of time in seconds to display the page before automatically
 moving to the next page, or 0 for manual page transitions only
	transitiontime - the amount of time to take over the transition, in seconds
	Since:
	2.0

	
drawText

public void drawText(String text,
 float x,
 float y)

 Draw a line of text at the specified position. A simple way to draw
 a single line of text. The co-ordinates specify the position of the
 baseline of the first character - for other positions (e.g. to align
 the top of the text), adjust the co-ordinates by the return value from
 PDFStyle.getTextTop(java.lang.String) and friends.

	Parameters:
	text - the line of text to draw
	x - the X co-ordinate to draw the text at
	y - the Y co-ordinate to draw the text at
	Since:
	1.0

	
drawTextLink

public void drawTextLink(String text,
 float x,
 float y,
 PDFAction action)

 Draw a line of text at a the specified position, and set it to
 link to the specified action. A shorthand combination of
 drawText and beginTextLink.

 Note that this method will not work as advertised if the position
 of the text has been modified via the rotate(float, float, double) method.
 This is a shortcoming inherent in the PDF document specification

	Parameters:
	text - the line of text to draw
	x - the X co-ordinate to draw the text at
	y - the Y co-ordinate to draw the text at
	action - the action to perform when the text is clicked on
	Since:
	1.1

	
beginText

public void beginText(float x1,
 float y1,
 float x2,
 float y2)

 Begin a paragraph of text. The parameters specify the rectangle
 measured in the current canvas units that will fully contain the text.
 Left-to-right text will wrap when it reaches the right margin and
 continue being rendered until the bottom margin is reached, after which
 the text will not be rendered and all calls to drawText
 will return -1. This "overflowed" text can be rendered in a new block
 by calling continueText

 Note: Although suitable for layout of simple text paragraphs, the
 beginText/drawText/continueText
 methods are not suitable for complicated text layout involving either precise
 measurement, such as is required when a paragraph is required to wrap at the
 end of a section or page. In this situation a LayoutBox should be
 used instead.

	Parameters:
	x1 - the X co-ordinate of the first corner of the text rectangle.
	y1 - the Y co-ordinate of the first corner of the text rectangle.
	x2 - the X co-ordinate of the second corner of the text rectangle.
	y2 - the Y co-ordinate of the second corner of the text rectangle.
	Throws:
	IllegalStateException - if beginText has already been called
 (beginText-endText pairs can't be nested).
	See Also:
	LayoutBox

	
continueText

public float continueText(float x1,
 float y1,
 float x2,
 float y2,
 PDFPage page)

 As for beginText, but continue any text that overflowed from the
 specified page. This method is a legacy method kept here
 for the large install base of 1.0 and 1.1 users. We do not
 recommend it for new development. If your text is going to be
 wrapping from one rectangle to another, we strongly recommend you
 use the LayoutBox class.

	Parameters:
	x1 - the X co-ordinate of the first corner of the text rectangle
	y1 - the Y co-ordinate of the first corner of the text rectangle
	x2 - the X co-ordinate of the second corner of the text rectangle
	y2 - the Y co-ordinate of the second corner of the text rectangle
	page - the page to take the overflowed text from
	See Also:
	LayoutBox

	
endText

public float endText(boolean justifylast)

End the paragraph of text.

	Parameters:
	justifylast - if the current text style is justified,
 whether to justify the last line of text. If the current
 style is not justified, this has no effect.
	Returns:
	the number of points that needed to be rendered
 to clear the buffer
	Throws:
	IllegalStateException - if beginText wasn't called first
	See Also:
	LayoutBox

	
discardText

public float discardText()

Discard the paragraph of text. This method is identical to endText
 in every way, except no text is actually rendered. Prior to the LayoutBox
 class, this was the only way to determine the height of a block of text without
 displaying it. It's nowhere near as efficient, and it's use for this purpose is
 strongly discouraged.

	Returns:
	the number of points that would have been rendered to clear the buffer
	Since:
	1.0.1
	See Also:
	LayoutBox

	
drawText

public float drawText(String text)

 Draw a paragraph of text in the current style. The text is automatically
 wrapped at the edge of the box specified in the call to beginText,
 and is aligned according to the alignment of the current style.

 If any characters in the string aren't available in the current font,
 they are ignored and a warning message is printed to
 System.err. The text to be drawn may contain newline characters,
 which have the predictable effect.

 This method returns -1 if the text can't be displayed in the
 box specified by beginText. Use of this return value to
 measure and position text is discouraged, as it is inaccurate when mixing
 different font sizes on a line and can be plain wrong when the text box is
 nearly full. If exact sizing and positioning are a concern, please use the
 LayoutBox class instead.

	Parameters:
	text - the line of text to be drawn
	Returns:
	the number of points required to render the lines to
 the document (zero or more), or -1 if the text box is full.
	Throws:
	IllegalStateException - if no font or color is specified,
 or if beginText hasn't been called first.
	See Also:
	LayoutBox,
PDFFont

	
beginTextLink

public void beginTextLink(PDFAction action,
 PDFStyle linkstyle)

 Start a "link" section in the text. Any text displayed between here
 and the corresponding endTextLink() method call will act
 as a AnnotationLink annotation, in the same way as the <A>
 tag does in HTML: When the user clicks on the text, the specified
 action is performed.

 Note that this method will not work as advertised if the position
 of the text has been modified via the rotate(float, float, double) method.
 This is a shortcoming inherent in the PDF document specification.

	Parameters:
	action - the action to perform when the text is clicked on
	linkstyle - the style to apply to any text within the link area,
 or null if the current style is to be used. For an underlined
 link, use PDFStyle.LINKSTYLE
	Throws:
	IllegalStateException - if a link has already been begun (links
 can't be nested)
	Since:
	1.1
	See Also:
	AnnotationLink,
PDFStyle.LINKSTYLE

	
endTextLink

public PDFAnnotation[] endTextLink()

 End the "link" section in the text, analogous to the tag
 in HTML.

 This method returns the list of annotations that were added - it's a
 list because if the link wrapped over several lines or pages, several
 annotations would have been added. The idea behind this is that you
 can add annotations to the text, and then set the actions they refer
 to (via the AnnotationLink.setAction(org.faceless.pdf2.PDFAction) method) after
 they've been added - for example, to link to a page that hasn't been
 created yet.

	Throws:
	IllegalStateException - if a link has not been begun
	Since:
	1.1

	
beginTag

public void beginTag(String tag,
 Map<String,Object> atts)

Open a structural tag on this page. This call must be matched
 by a later call to endTag().
 See the PDFCanvas version of this method for the full documnentation.

	Specified by:
	beginTag in interface PDFDrawable
	Parameters:
	tag - name of the tag
	atts - user defined attributes for this tag, or null
	Since:
	2.11.9
	See Also:
	PDFCanvas.beginTag(java.lang.String, java.util.Map<java.lang.String, java.lang.Object>)

	
endTag

public void endTag()

Close a structural tag on this page. This call must match
 an earlier call to beginTag()
 See the PDFCanvas version of this method for the full documnentation.

	Specified by:
	endTag in interface PDFDrawable
	Since:
	2.11.9
	See Also:
	PDFCanvas.beginTag(java.lang.String, java.util.Map<java.lang.String, java.lang.Object>)

	
setThumbnail

public void setThumbnail(PDFImage image)

Set the embedded page thumbnail. Page thumbnails are not required,
 rarely used in modern PDFs and are ignore by many viewers (including
 Acrobat 9 or later). In most cases it's better to leave
 them unset as the viewer application will regenerate them.
 The exception is when pages are very large or complex, and a small
 file-size is not a consideration.

	Parameters:
	image - the thumbmail image, which ideally should have a longest dimension <= 105px
	Since:
	2.11.18

	
getThumbnail

public PDFImage getThumbnail()

Return the thumbnail image on the page, as set by setThumbnail(org.faceless.pdf2.PDFImage).
 May be null

	Since:
	2.11.18

	
addPropertyChangeListener

public void addPropertyChangeListener(PropertyChangeListener listener)

Add a PropertyChangeListener to this PDFPage. PropertyChangeEvents
 will be raised when various aspects of this annotation are changed

	Since:
	2.11.19
	See Also:
	FormElement.addPropertyChangeListener(java.beans.PropertyChangeListener),
PDFAnnotation.addPropertyChangeListener(java.beans.PropertyChangeListener)

	
removePropertyChangeListener

public void removePropertyChangeListener(PropertyChangeListener listener)

Remove a previously added PropertyChangeListener from this PDFPage.

	Since:
	2.11.19
	See Also:
	addPropertyChangeListener(java.beans.PropertyChangeListener)

	
setMeasurementUnits

public void setMeasurementUnits(float x1,
 float y1,
 float x2,
 float y2,
 String scale)

Set the natural scale for measurements in the specified area of the page. This
 value is used in Acrobat only for measuring distances or areas on the page, although it
 may be used elsewhere by other tools. It has no impact on any other coordinate systems
 used in the PDF API.

	Parameters:
	x1 - the X value of the lower-left corner of the rectangle
	y1 - the Y value of the lower-left corner of the rectangle
	x2 - the X value of the upper-right corner of the rectangle
	y2 - the Y value of the upper-right corner of the rectangle
	scale - the scale, of the format "1pt = 20mm" - eg "10mm = 300mm", "1pt = 2in", "1in = 1mi".
	Since:
	2.14

	
putUserData

public void putUserData(String key,
 Object value)

Set a custom property on the PDF. The property will be saved with the
 file with the "BFOO_" prefix.

	Parameters:
	value - a CharSequence, Number, Date, Calendar, Boolean, byte[], or a List/Map of those values, or null to remove the property
	Since:
	2.24.2

	
getUserData

public Object getUserData(String key)

Return a property previously set on the PDF with the putUserData() method

	Returns:
	a String, Boolean, Number, Calendar, byte[] or a Map/List of those values if found, or null if no such property exists.
	Since:
	2.24.2

	
getAssociatedFiles

public Collection<EmbeddedFile> getAssociatedFiles()

Return the list of embedded files assocatiated with this PDFAnnotation. The list
 is live and can be edited.
 The ability to associate files with a PDFAnnotation is new in PDF 2.0.

	Since:
	2.26
	See Also:
	AnnotationFile

	
createGraphics

public Graphics2D createGraphics(PDF pdf)

Create a Graphics2D object which can be used to write to this page.
 See the PDFCanvas.createGraphics(org.faceless.pdf2.PDF) method for full documentation.

	Parameters:
	pdf - the PDF - required, although if its specified as null it will use the value of page.getPDF()
	Since:
	2.26.3

	
getDocumentPart

public DocumentPart getDocumentPart()

Return the DocumentPart this page belongs to, or null if it doesn't belong to any

	Since:
	2.28.3

	
toString

public String toString()

	
putLiteral

public void putLiteral(String key,
 String tokens)

Put a literal token sequnce. For debugging

	Parameters:
	key - the key
	tokens - the token sequence, eg "true" or "/foo" or "[/Foo/Bar]". No refs, just direct objects.

	
clone

protected Object clone()

	Overrides:
	clone in class Object

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2024 Big Faceless Organization

