

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class PDFGlyphVector

	java.lang.Object
	
	org.faceless.pdf2.PDFGlyphVector

	

public final class PDFGlyphVector
extends Object

A PDFGlyphVector is a sequence of glyphs in a particular font. It's a very
 low-level class and most likely the LayoutBox is a better option,
 but if there's a requirement to get text onto the page as fast as possible
 without any layout then this class can be used. A quick example:

 PDFStyle style = ...
 PDFGlyphVector vector = style.createGlyphVector("Hello World", Locale.getDefault());
 canvas.drawGlyphVector(vector, x, y);

	Since:
	2.11.22
	See Also:
	PDFStyle.createGlyphVector(java.lang.String, java.util.Locale),
PDFCanvas.drawGlyphVector(org.faceless.pdf2.PDFGlyphVector, float, float)

	

	

Field Summary

Fields 	Modifier and Type	Field	Description
	static int	FLAG_BREAKPOINT	
A parameter to getFlag(int) which indicates whether there is a theoretical
 word breakpoint before this glyph.

	static int	FLAG_CJKSCRIPT	
A parameter to getFlag(int) which returns whether the glyph is
 in a run of Han, Hangul, Hiragana, Katakana or Bopomofo glyphs.

	static int	FLAG_COLR	
Return true if this particular glyph is a color glyph using the Microsoft "COLR"
 method of creating colored glyphs - stacking outlines in different colors.

	static int	FLAG_EXPLICIT	
A parameter to the getFlag(int) which returns true if the glyph used is
 not the same glyph that you would get by default without any form
 of OpenType or complex layout.

	static int	FLAG_LEFTJOIN	
A parameter to getFlag(int) which returns whether the glyph is cursively joined to the left

	static int	FLAG_LIGATURE	
A parameter to getFlag(int) which returns whether the glyph is a ligature composed of 2 (or more)
 base characters.

	static int	FLAG_MATHEXTENDED	
A parameter to getFlag(int) which returns whether the glyph is a vertically
 "extended shape"
 mathematical glyph, meaning super/subscripts should be
 positioned relative to the glyph bounding-box, not the nominal size

	static int	FLAG_PNG	
Return true if this particular glyph is a color glyph using the Google "CBDT"
 method of creating colored glyphs - essentially, a PNG bitmap image.

	static int	FLAG_RIGHTJOIN	
A parameter to getFlag(int) which returns whether the glyph is cursively joined to the right

	static int	FLAG_SMALLCAPS	
A parameter to getFlag(int) which returns whether the glyph was
 replaced with a synthesized "small-caps" version of the original.

	static int	FLAG_SVG	
Return true if this particular glyph is a color glyph using an SVG outline.

	

Method Summary

All Methods Instance Methods Concrete Methods 	Modifier and Type	Method	Description
	String	getActualText()	
Get the "ActualText" this PDFGlyphVector represents.

	float	getAdjacentPosition(PDFGlyphVector gv,
 float y)	

 Given a second PDFGlyphVector and the difference in baselines
 between this glyph vector and the second, return the horizontal
 kerning between this PDFGlyphVector and the second so that the
 two are adjacent.

	double	getAdvance(int off)	
Return the horizontal advance for the glyph at the specified index

	int	getCID(int off)	
Return the glyph id of the glyph at the specified index

	int	getFirstIndex(int off)	
Return the first index into the String returned from getText()
 of the glyph at the specified offset.

	boolean	getFlag(int glyph,
 int flag)	
Return whether the specified glyph has the specified flag set.

	AffineTransform	getGlyphTransform(int off)	
Return the AffineTransform previously applied to the glyph via
 setGlyphTransform(int, java.awt.geom.AffineTransform), or null if no transform was applied.

	int	getLastIndex(int off)	
Return the last index into the String returned from getText()
 of the glyph at the specified offset.

	byte	getLevel()	
Returns the Bidi level of this PDFGlyphVector, as specified in the constructor

	Locale	getLocale()	
Return the initial Locale that was specified when the PDFGlyphVector was created.

	double	getLSB(int off)	
Return the left-side bearing of the glyph at the specified index

	int	getNumGlyphs()	
Returns the number of glyphs in this PDFGlyphVector

	int	getNumSpaces()	
Returns the number of space characters in this PDFGlyphVector.

	Shape	getOutline()	

 Get the Outline of this PDFGlyphVector as a Shape.

	Shape	getOutline(int index,
 boolean boundsOnly)	

 Get the Outline of a single glyph from this PDFGlyphVector as a Shape.

	Point2D	getPosition(int off)	
Return the start position of the glyph at the specified index, relative
 to the start position of the start of the text.

	PDFStyle	getStyle()	
Returns the PDFStyle of this PDFGlyphVector

	String	getText()	
Return the text this PDFGlyphVector was originally created from.

	int	getTextLength()	

 Return the number of characters from the
 original String this PDFGlyphVector represents.

	int	getTextOffset()	
Return the initial text offset that was specified when the PDFGlyphVector
 was created.

	float	getWidth()	
Returns the width in points of this sequence.

	float	getWidth(int first,
 boolean firstStart,
 int last,
 boolean lastStart)	

 Return the width from the specified edges of the first glyph to the last glyph.

	float	getWidth(int first,
 int last)	
Return the width from the start of the first glyph to the end
 of the last glyph.

	void	kern(int off,
 float kern)	
Add or remove whitespace at a particular point in the PDFGlyphVector.

	void	restorePositions()	
Restore the positions of all the glyphs in the PDFGlyphVector to
 that saved by an earlier call to savePositions().

	void	savePositions()	
Save the positions of all the glyphs in the PDFGlyphVector.

	void	setActualText(String actualtext)	
Set the "ActualText" this PDFGlyphVector represents.

	void	setGlyphTransform(int off,
 AffineTransform transform)	
Set an AffineTransform on an individual glyph.

	void	setStyle(PDFStyle style)	
Override the style originally used to create this PDFGlyphVector.

	PDFGlyphVector[]	splitAt(int headlen,
 int tailstart)	
Split this PDFGlyphVector at the specified point, returning an
 array of two new PDFGlyphVectors containing the two halves.

	float	stretch(float chardelta,
 float spacedelta)	
Stretch or squash this GlyphVector by adding track kerning between each glyph.

	String	toString()	

	

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

	

	

Field Detail

	
FLAG_LEFTJOIN

public static final int FLAG_LEFTJOIN

A parameter to getFlag(int) which returns whether the glyph is cursively joined to the left

	Since:
	2.23.4
	See Also:
	Constant Field Values

	
FLAG_RIGHTJOIN

public static final int FLAG_RIGHTJOIN

A parameter to getFlag(int) which returns whether the glyph is cursively joined to the right

	Since:
	2.23.4
	See Also:
	Constant Field Values

	
FLAG_LIGATURE

public static final int FLAG_LIGATURE

A parameter to getFlag(int) which returns whether the glyph is a ligature composed of 2 (or more)
 base characters. This returns false for a base character combined with an accent

	Since:
	2.23.4
	See Also:
	Constant Field Values

	
FLAG_EXPLICIT

public static final int FLAG_EXPLICIT

A parameter to the getFlag(int) which returns true if the glyph used is
 not the same glyph that you would get by default without any form
 of OpenType or complex layout. This can be useful to determine if the
 PDFGlyphVector could be recreated without any OpenType layout, or if the
 Unicode value of the Glyph could be reasonably inferred from the Glyph ID.

	Since:
	2.24.1
	See Also:
	Constant Field Values

	
FLAG_MATHEXTENDED

public static final int FLAG_MATHEXTENDED

A parameter to getFlag(int) which returns whether the glyph is a vertically
 "extended shape"
 mathematical glyph, meaning super/subscripts should be
 positioned relative to the glyph bounding-box, not the nominal size

	Since:
	2.24.1
	See Also:
	Constant Field Values

	
FLAG_CJKSCRIPT

public static final int FLAG_CJKSCRIPT

A parameter to getFlag(int) which returns whether the glyph is
 in a run of Han, Hangul, Hiragana, Katakana or Bopomofo glyphs.

	Since:
	2.24.2
	See Also:
	Constant Field Values

	
FLAG_SMALLCAPS

public static final int FLAG_SMALLCAPS

A parameter to getFlag(int) which returns whether the glyph was
 replaced with a synthesized "small-caps" version of the original.

	Since:
	2.24.2
	See Also:
	Constant Field Values

	
FLAG_BREAKPOINT

public static final int FLAG_BREAKPOINT

A parameter to getFlag(int) which indicates whether there is a theoretical
 word breakpoint before this glyph. This will be false for combining marks
 and glyphs that combine with a previous glyph to form a syllable in scripts like Devanagai.

	Since:
	2.24.4
	See Also:
	Constant Field Values

	
FLAG_COLR

public static final int FLAG_COLR

Return true if this particular glyph is a color glyph using the Microsoft "COLR"
 method of creating colored glyphs - stacking outlines in different colors.

	Since:
	2.24.4
	See Also:
	Constant Field Values

	
FLAG_PNG

public static final int FLAG_PNG

Return true if this particular glyph is a color glyph using the Google "CBDT"
 method of creating colored glyphs - essentially, a PNG bitmap image.

	Since:
	2.24.4
	See Also:
	Constant Field Values

	
FLAG_SVG

public static final int FLAG_SVG

Return true if this particular glyph is a color glyph using an SVG outline.
 This is not currently supported by the PDF API.

	Since:
	2.24.4
	See Also:
	Constant Field Values

	

Method Detail

	
splitAt

public PDFGlyphVector[] splitAt(int headlen,
 int tailstart)

Split this PDFGlyphVector at the specified point, returning an
 array of two new PDFGlyphVectors containing the two halves.

	Parameters:
	headlen - the length (the number of glyphs) of this item after
 the split, from 1 .. getNumGlyphs()
	tailstart - the index of the first glyph of the tail, from
 headlen .. getNumGlyphs(). If the resulting PDFGlyphVector
 would contain zero glyphs, no tail is created and this method returns
 null as the second argument to the array
	Since:
	2.22

	
getLevel

public byte getLevel()

Returns the Bidi level of this PDFGlyphVector, as specified in the constructor

	Since:
	2.22

	
getText

public String getText()

Return the text this PDFGlyphVector was originally created from.
 If the PDFGlyphVector was created from a split, this will be
 the same String as the source PDFGlyphVector.

	Since:
	2.23.4

	
getTextOffset

public int getTextOffset()

Return the initial text offset that was specified when the PDFGlyphVector
 was created.

	Since:
	2.23.4

	
getStyle

public PDFStyle getStyle()

Returns the PDFStyle of this PDFGlyphVector

	
getLocale

public Locale getLocale()

Return the initial Locale that was specified when the PDFGlyphVector was created.

	Since:
	2.23.4

	
setStyle

public void setStyle(PDFStyle style)

Override the style originally used to create this PDFGlyphVector.
 This can be used to change the color or other non-font related
 data, but the font should not be changed. Doing so will
 likely cause errors

	Since:
	2.23

	
getNumGlyphs

public int getNumGlyphs()

Returns the number of glyphs in this PDFGlyphVector

	
getNumSpaces

public int getNumSpaces()

Returns the number of space characters in this PDFGlyphVector.
 Space characters are defined to be "word-separators" from css-text,
 (space and non-breaking space, as well as U+1361, U+10100, U+10101,
 U+1039F and U+1091F).

	Since:
	2.22

	
savePositions

public void savePositions()

Save the positions of all the glyphs in the PDFGlyphVector. The
 positions can be restored later by calling restorePositions().
 This can be used to undo the effects of a kern(int, float) or stretch(float, float)
 operation.

	Since:
	2.23

	
restorePositions

public void restorePositions()

Restore the positions of all the glyphs in the PDFGlyphVector to
 that saved by an earlier call to savePositions().
 This can be used to undo the effects of a kern(int, float) or stretch(float, float)
 operation.

	Since:
	2.23

	
getTextLength

public int getTextLength()

 Return the number of characters from the
 original String this PDFGlyphVector represents.
 If every character can be displayed using this
 font, the returned value will be the same as
 the length of the String supplied to
 PDFStyle.createGlyphVector().
 If no characters could be displayed, this method
 returns 0, and any range in between is possible too.

 A convenience method that is identical to
 getLastIndex(getNumGlyphs() - 1) + 1

	Since:
	2.22

	
getFlag

public boolean getFlag(int glyph,
 int flag)

Return whether the specified glyph has the specified flag set.
 If multiple flags are combined with a logical-or, returns true if any of the flags are set.

	Parameters:
	glyph - the glyph number from 0..getNumGlyphs()-1
	flag - the flag
	Returns:
	true if the flag is set on that glyph

	
getWidth

public float getWidth()

Returns the width in points of this sequence.

	
getWidth

public float getWidth(int first,
 int last)

Return the width from the start of the first glyph to the end
 of the last glyph. This excludes any kerning applied after
 the final glyph. So getWidth() == getWidth(0, getNumGlyphs() - 1) + final_kern.
 Since 2.23.3 simply calls getWidth(first, true, last, false)

	Parameters:
	first - the index of the first glyph in the PDFGlyphVector to measure, inclusive
	last - the index of the last glyph in the PDFGlyphVector to measure, inclusive
	Since:
	2.22

	
getWidth

public float getWidth(int first,
 boolean firstStart,
 int last,
 boolean lastStart)

 Return the width from the specified edges of the first glyph to the last glyph.
 If either "start" parameter is true, the measurement is made to the start edge
 of that glyph - the left edge for LTR content, the right for RTL. If the "start"
 parameter is false, the measurement is made to the end edge. This is the start
 of the glyph plus the advance, and excludes any kerning or justification applied
 between the trailing edge of the glyph and the start of the next one, if any.
 This results in the following equivalences with other methods:

	getWidth() == getWidth(0, true, getNumGlyphs(), true)
	getWidth(a, b) == getWidth(a, true, b, false)
	getAdvance(0) == getWidth(0, true, 0, false)

	Parameters:
	first - the index of the first glyph in the PDFGlyphVector to measure, inclusive
	firstStart - if true, the start edge of the first glyph is used. If false, the end edge is used
	last - the index of the last glyph in the PDFGlyphVector to measure, inclusive
	Throws:
	IllegalArgumentException - if first > last, if first < 0, if last > getNumGlyphs() or if (last == getNumGlyphs() and lastStart == false)
	Since:
	2.23.3

	
getFirstIndex

public int getFirstIndex(int off)

Return the first index into the String returned from getText()
 of the glyph at the specified offset.
 Glyphs may represent more than one character - for example,
 if the "f" and "i" characters were combined into an "fi" ligature
 then this method would return the index of "f" in the original String.

	Parameters:
	off - the logical glyph index, from 0..getNumGlyphs()-1 inclusive
	Since:
	2.22

	
getLastIndex

public int getLastIndex(int off)

Return the last index into the String returned from getText()
 of the glyph at the specified offset.
 Glyphs may represent more than one character - for example,
 if the "f" and "i" characters were combined into an "fi" ligature
 then this method would return the index of "i" in the original String.

	Parameters:
	off - the logical glyph index, from 0..getNumGlyphs()-1 inclusive
	Since:
	2.22

	
getCID

public int getCID(int off)

Return the glyph id of the glyph at the specified index

	Parameters:
	off - the logical glyph index, from 0..getNumGlyphs()-1 inclusive
	Since:
	2.22.2

	
getAdvance

public double getAdvance(int off)

Return the horizontal advance for the glyph at the specified index

	Parameters:
	off - the logical glyph index, from 0..getNumGlyphs()-1 inclusive
	Since:
	2.22.2

	
getLSB

public double getLSB(int off)

Return the left-side bearing of the glyph at the specified index

	Parameters:
	off - the logical glyph index, from 0..getNumGlyphs()-1 inclusive
	Since:
	2.24.2

	
getPosition

public Point2D getPosition(int off)

Return the start position of the glyph at the specified index, relative
 to the start position of the start of the text. Note that this does
 not include any transformation set on the glyph with setGlyphTransform(int, java.awt.geom.AffineTransform)

	Parameters:
	off - the logical glyph index, from 0..getNumGlyphs()-1 inclusive
	Since:
	2.22.2

	
stretch

public float stretch(float chardelta,
 float spacedelta)

Stretch or squash this GlyphVector by adding track kerning between each glyph.
 Space is considered to be added after a glyph, which is only significant
 if the PDFGlyphVector is split after being stretched. Calling this method more
 than once will add the values to the adjustments set by any previous
 calls to stretch(float, float) or kern(int, float), not replace them.

	Parameters:
	chardelta - the number of points to add to the overall width of this
 PDFGlyhVector, evenly distributed over every glyph.
	spacedelta - the number of points to add to the overall width of this
 PDFGlyhVector, added to spaces only.
	Returns:
	the new width of this PDFGlyphVector, which would normally be
 getWidth() + chardelta + spacedelta. The only time that won't be
 the case is if
 (spacedelta != 0 && getNumSpaces() == 0) || getNumGlyphs() == 0
	Since:
	2.22

	
kern

public void kern(int off,
 float kern)

Add or remove whitespace at a particular point in the PDFGlyphVector.
 The specified amount of space is added to the glyph after the
 specified index - a positive value moves glyphs apart, a negative value
 moves them closer together. Calling this method more than once will
 add the value to adjustment set by previous calls to stretch(float, float)
 or kern(int, float), not replace them. Kerned value are considered
 to be part of the glyph and will be maintained if the PDFGlyphVector is split
 into two parts.

	Parameters:
	off - the logical glyph index to add the space to, from 0..getNumGlyphs() exclusive
	kern - the amount of space to add after this glyph, in points.
	Since:
	2.22

	
getAdjacentPosition

public float getAdjacentPosition(PDFGlyphVector gv,
 float y)

 Given a second PDFGlyphVector and the difference in baselines
 between this glyph vector and the second, return the horizontal
 kerning between this PDFGlyphVector and the second so that the
 two are adjacent.

 In almost all cases this is simply 0 - the exception is when
 OpenType "math" layout is in use.

 For example, given two glyphvectors, one representing the base
 and the other a superscript, here's how to position them relative
 to eachother.

 PDFGlyphVector base = ...
 PDFGlyphVector super = ...
 float superscriptOffset = baseFontSize * 0.5f; // +ve moves up
 float x = base.getAdjacentPosition(super, superscriptOffset);
 canvas.drawGlyphVector(base, 0, 0);
 canvas.drawGlyphVector(super, x, superscriptOffset);

 If the "y" value passed in is NaN, the returned value will instead
 show the top accent position of the final glyph - the
 top accent attachment position, less half the width of the
 other PDFGlyphVector.
 For example, here is how to correctly position a value above the
 integral sign, which is often sloped to the right.

 PDFGlyphVector integral = big.createGlyphVector("∫", null);
 PDFGlyphVector super = small.createGlyphVector("n", null);
 float x = base.getAdjacentPosition(super, Float.NaN);
 canvas.drawGlyphVector(base, 0, 0);
 canvas.drawGlyphVector(super, x, big.getFontSize() * ascent);

	Parameters:
	gv - the other PDFGlyphVector. If null, only the "italicsCorrection" or "topAccentAttachmentPoint"
 value on this font is returned, depending on whether y < 0 or y != y
	y - the difference from this objects baseline to the baseline of "gv". A positive value means "gv"
 is a superscript of this PDFGlyphVector, a negative value means its a subscript (and the returned value
 will include "italicsCorrection"). A value of zero means
 the baseline is the same, in which case the returned value is the same as getWidth().
 A value of Float.NaN will request the "top accent position" of the final glyph in this object.
	Returns:
	the X position to place the second PDFGlyphVector, relative to the start of this one
	Since:
	2.24.1

	
setGlyphTransform

public void setGlyphTransform(int off,
 AffineTransform transform)

Set an AffineTransform on an individual glyph. This method will
 adjust the glyph position but have no effect on any surrounding
 glyphs, which will be positioned as normal.

	Parameters:
	off - the logical glyph index, from 0..getNumGlyphs()-1 inclusive
	transform - the AffineTransform to apply
	Since:
	2.23.1

	
getGlyphTransform

public AffineTransform getGlyphTransform(int off)

Return the AffineTransform previously applied to the glyph via
 setGlyphTransform(int, java.awt.geom.AffineTransform), or null if no transform was applied.

	Parameters:
	off - the logical glyph index, from 0..getNumGlyphs()-1 inclusive
	Returns:
	the glyph transform
	Since:
	2.23.1

	
getOutline

public Shape getOutline()

 Get the Outline of this PDFGlyphVector as a Shape. The Shape is in PDF
 coordinates, so (0,0) is the left-most edge of the glyph at the baseline and
 positive values extend up. To render to a bitmap, it needs to be flipped vertically.
 The returned Shape will include any glyph transformations set by setGlyphTransform(int, java.awt.geom.AffineTransform).

 If we cannot retrieve the outline (for example if the font is not embedded) then
 this method returns null.

	Since:
	2.23.1

	
getOutline

public Shape getOutline(int index,
 boolean boundsOnly)

 Get the Outline of a single glyph from this PDFGlyphVector as a Shape. The same description
 that applies to getOutline() applies here, except only a single glyph is returned.

 If the rectangular bounds is requested, a Shape is always returned - although it may not
 be rectangular (if the glyph is transformed or italicized). If the exact shape is requested,
 and we cannot retrieve the outline (for example, if the font is not embedded) then
 this method returns null.

	Parameters:
	index - the glyph index, from 0..getNumGlyphs() - 1
	boundsOnly - if true, only the rectangular bounds of the shape is considered - if false, the exact shape is returned.
	Since:
	2.25

	
getActualText

public String getActualText()

Get the "ActualText" this PDFGlyphVector represents. This is possibly
 a subtext of the original text.

	Since:
	2.23.4

	
setActualText

public void setActualText(String actualtext)

Set the "ActualText" this PDFGlyphVector represents. This method can be called
 to change the value if the logical value of the text is not represented by the
 text the glyphs were created from - the specified value will be stored in the
 document structure and used for text extraction

	Parameters:
	actualtext - the text value that should be stored in the Document Structure
	Since:
	2.23.4

	
toString

public String toString()

	Overrides:
	toString in class Object

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2024 Big Faceless Organization

