

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class PDFFont

	java.lang.Object
	
	org.faceless.pdf2.PDFFont

	
	All Implemented Interfaces:
	Cloneable

	Direct Known Subclasses:
	OpenTypeFont, StandardCJKFont, StandardFont, Type1Font, Type3Font

public abstract class PDFFont
extends Object

 The PDFFont is the abstract superclass for all Fonts in a PDF document.
 It defines properties which are common to all fonts, regardless of writing
 direction.

	Since:
	1.0
	See Also:
	PDFStyle,
LayoutBox

	

	

Method Summary

All Methods Instance Methods Abstract Methods Concrete Methods 	Modifier and Type	Method	Description
	protected Object	clone()	
	abstract float	getAscender()	
Get the Ascender for the font (the maximum height above the baseline the
 font extends), as a proportion of the point size.

	String[]	getAvailableFeatures()	
Return the list of available features for this font.

	String	getBaseName()	
Return the Base Font Name for this font.

	float	getBottom(String s)	
Get the bottom-most Y co-ordinate if this String was rendered in 1
 point high text at position (0,0)

	abstract float	getCapHeight()	
Get the Cap-Height of the font - normally the height of an upper-case 'O' character

	int	getCharWidth(char c)	
Return the width of the specified character in millipoints if
 the font size was 1 point.

	int	getCharWidth(int codepoint)	
Return the width of the specified character in millipoints if
 the font size was 1 point.

	abstract float	getDefaultLeading()	

 Get the default leading for this font - the preferred distance between
 two successive baselines of text.

	abstract BitSet	getDefinedCodepoints()	
Return read-only BitSet containing all the Unicode codepoints
 defined in this font

	abstract float	getDescender()	
Get the Descender for the font (the maximum height below the baseline the
 font extends), as a proportion of the point size.

	int	getFeature(String feature)	
Returns whether the specified feature is currently set for this font.

	int	getKerning(char c1,
 char c2)	
Get the horizontal character-to-character (or "pair-wise") kerning in this font
 for the specified characters, in millipoints.

	int	getKerning(int codepoint1,
 int codepoint2)	
Get the horizontal character-to-character (or "pair-wise") kerning in this font
 for the specified characters, in millipoints.

	float	getLeft(String s)	
Get the left-most X co-ordinate if this String was rendered in 1
 point high text at position (0,0)

	Reader	getMetaData()	

 Return any XML metadata associated with this object.

	float	getRight(String s)	
Get the right-most X co-ordinate if this String was rendered in 1
 point high text at position (0,0).

	abstract float	getStrikeoutPosition()	
Get the strikeout position, as a proportion of the font size.

	abstract float	getStrikeoutThickness()	
Get the strikeout thickness, as a proportion of the font size.

	abstract float	getSubscriptPosition()	

 Get the recommended position of a sub-script version of this font, as
 a proportion of the sub-scripted font size.

	abstract float	getSubscriptSize()	

 Get the recommended size of a super/sub script version of this font, as
 a proportion of the normal font size.

	abstract float	getSuperscriptPosition()	

 Get the recommended position of a super-script version of this font, as
 a proportion of the sub-scripted font size.

	float	getTop(String s)	
Get the top-most Y co-ordinate if this String was rendered in 1
 point high text at position (0,0)

	abstract float	getUnderlinePosition()	
Get the underline position, as a proportion of the font size.

	abstract float	getUnderlineThickness()	
Get the underline thickness, as a proportion of the font size.

	abstract float	getXHeight()	
Get the X-Height of the font - normally the height of a lower-case 'x' character.

	XMP	getXMP()	
Return an XMP Metadata object representing any XML metadata associated with this object

	boolean	hasFeature(String feature)	
Return true if the font contains the specified feature

	abstract boolean	isBold()	
Return true if the font is bold

	boolean	isDefined(char c)	
Return true if the specified Unicode character is defined in the font.

	boolean	isDefined(int codepoint)	
Return true if the specified Unicode character is defined in the font.

	boolean	isEmbedded()	
Return true if this font is Embedded

	boolean	isHorizontal()	
Return true if the specified font is written Left-to-Right or
 Right-to-Left.

	abstract boolean	isItalic()	
Return true if the font is italic

	abstract boolean	isMonospace()	
Return true if every character has the same width (like Courier),
 false if every character is potentially a different width (like
 Times-Roman)

	abstract boolean	isSerif()	
Return true if the font is serif

	boolean	isSubset()	
Return true if this font is Subset

	void	putLiteral(String key,
 String tokens)	
Put a literal token sequnce.

	void	setFeature(String feature,
 boolean on)	

 Set or clear an optional feature on a font.

	void	setFeature(String feature,
 int value)	

 Set or clear an optional feature on a font.

	void	setMetaData(String metadata)	

 Set the XML metadata associated with this object.

	String	toString()	
	PDFFont	versionBold()	
Return a bold version of the current font, if available.

	PDFFont	versionItalic()	
Return an italic version of the current font, if available.

	PDFFont	versionNonBold()	
Return a non-bold version of the current font, if available.

	PDFFont	versionNonItalic()	
Return a non-italic version of the current font, if available.

	PDFFont	versionRegular()	
Return a non-bold, non-italic version of the current font, if available.

	

Methods inherited from class java.lang.Object

equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

	

	

Method Detail

	
clone

protected Object clone()

	
getLeft

public final float getLeft(String s)

Get the left-most X co-ordinate if this String was rendered in 1
 point high text at position (0,0)

	
getTop

public final float getTop(String s)

Get the top-most Y co-ordinate if this String was rendered in 1
 point high text at position (0,0)

	
getBottom

public final float getBottom(String s)

Get the bottom-most Y co-ordinate if this String was rendered in 1
 point high text at position (0,0)

	
getRight

public float getRight(String s)

Get the right-most X co-ordinate if this String was rendered in 1
 point high text at position (0,0). This method will make it's
 calculation based on the features set on this font: the
 PDFStyle.getTextLength(java.lang.String)
 method can be used to perform the same calculation based on the
 values set in the style.

	
isItalic

public abstract boolean isItalic()

Return true if the font is italic

	Since:
	2.18

	
isBold

public abstract boolean isBold()

Return true if the font is bold

	Since:
	2.18

	
isSerif

public abstract boolean isSerif()

Return true if the font is serif

	Since:
	2.18

	
isDefined

public final boolean isDefined(char c)

Return true if the specified Unicode character is defined in the font.

	
isDefined

public boolean isDefined(int codepoint)

Return true if the specified Unicode character is defined in the font.
 This method is identical to isDefined(char) but takes an int,
 to cater for the new Unicode 4.0 codepoints added in Java 1.5.

	Parameters:
	codepoint - a Unicode codepoint between U+0000 and U+10FFFD
	Since:
	2.2.6

	
getCharWidth

public final int getCharWidth(char c)

Return the width of the specified character in millipoints if
 the font size was 1 point.

	Since:
	1.2

	
getCharWidth

public int getCharWidth(int codepoint)

Return the width of the specified character in millipoints if
 the font size was 1 point. This method is identical to the
 getCharWidth(char) method but takes an int to cater
 for the new Unicode 4.0 codepoints added in Java 1.5.

	Parameters:
	codepoint - a Unicode codepoint between U+0000 and U+10FFFD
	Since:
	2.2.6

	
getBaseName

public String getBaseName()

Return the Base Font Name for this font.

	
getKerning

public final int getKerning(char c1,
 char c2)

Get the horizontal character-to-character (or "pair-wise") kerning in this font
 for the specified characters, in millipoints. This is the distance to move the
 text cursor left after drawing character c1 in order to correctly position
 character c2. For many fonts and combinations of characters, this returns zero.

	Since:
	1.1.14
	See Also:
	PDFStyle.setTrackKerning(float)

	
getKerning

public int getKerning(int codepoint1,
 int codepoint2)

Get the horizontal character-to-character (or "pair-wise") kerning in this font
 for the specified characters, in millipoints. This method is identical to
 getKerning(char,char) but takes ints, to handle the new Unicode 4.0
 characters defined in Java 1.5

	Parameters:
	codepoint1 - a Unicode codepoint between U+0000 and U+10FFFD
	codepoint2 - a Unicode codepoint between U+0000 and U+10FFFD
	Since:
	2.2.6

	
isHorizontal

public boolean isHorizontal()

Return true if the specified font is written Left-to-Right or
 Right-to-Left.

	
isMonospace

public abstract boolean isMonospace()

Return true if every character has the same width (like Courier),
 false if every character is potentially a different width (like
 Times-Roman)

	Since:
	1.1.23

	
getAscender

public abstract float getAscender()

Get the Ascender for the font (the maximum height above the baseline the
 font extends), as a proportion of the point size. The exact source of
 of this value is undefined except for OpenTypeFonts, where it comes
 from the "hhea.ascender" value
 normally, or the from "OS2.sTypoAscender" flag if the USE_TYPO_METRICS flag is set.

	Since:
	1.1, with source of value clarified in 2.23

	
getDescender

public abstract float getDescender()

Get the Descender for the font (the maximum height below the baseline the
 font extends), as a proportion of the point size. The returned value is
 usually negative. The exact source of this value is undefined except
 for OpenTypeFonts, where it comes from the "hhea.descender" value
 normally, or the from "OS2.sTypoDescender" flag if the USE_TYPO_METRICS flag is set.

	Since:
	1.1, with source of value clarified in 2.23

	
getDefaultLeading

public abstract float getDefaultLeading()

 Get the default leading for this font - the preferred distance between
 two successive baselines of text. Values are a ratio of the font size, and
 are typically between 1 and 1.3

 Note that the values of the different spacing-between-lines methods have
 changed - in versions 1.0.4 and earlier this routine normally returned 1
 and the spacing was set by the PDFStyle.setTextLineSpacing(float) method.
 Since 1.1, the values for these two methods are effectively reversed. See
 the relevant method comments in the PDFStyle class for more
 information.

	
getUnderlineThickness

public abstract float getUnderlineThickness()

Get the underline thickness, as a proportion of the font size.

	Since:
	1.1

	
getUnderlinePosition

public abstract float getUnderlinePosition()

Get the underline position, as a proportion of the font size. Like
 the getDescender() method, the returned value is almost
 always negative, indicating below the baseline. The distance is
 from the baseline to the center of the underline.

	Since:
	1.1

	
getStrikeoutThickness

public abstract float getStrikeoutThickness()

Get the strikeout thickness, as a proportion of the font size.

	Since:
	1.1

	
getStrikeoutPosition

public abstract float getStrikeoutPosition()

Get the strikeout position, as a proportion of the font size.
 The value is the distance from the baseline to the center of
 the strikeout, and shuold be positive.

	Since:
	1.1

	
getSubscriptSize

public abstract float getSubscriptSize()

 Get the recommended size of a super/sub script version of this font, as
 a proportion of the normal font size. Typical value is around 0.6.

 For some fonts (like CJK or barcode fonts) where there is no concept
 of super or subscript, this value is entirely arbitrary.

	Since:
	1.1

	
getSuperscriptPosition

public abstract float getSuperscriptPosition()

 Get the recommended position of a super-script version of this font, as
 a proportion of the sub-scripted font size. Value is always positive.

 For some fonts (like CJK or barcode fonts) where there is no concept
 of super or subscript, this value is entirely arbitrary.

	Since:
	1.1

	
getSubscriptPosition

public abstract float getSubscriptPosition()

 Get the recommended position of a sub-script version of this font, as
 a proportion of the sub-scripted font size. Value is almost always
 zero or negative.

 For some fonts (like CJK or barcode fonts) where there is no concept
 of super or subscript, this value is entirely arbitrary.

	Since:
	1.1

	
getXHeight

public abstract float getXHeight()

Get the X-Height of the font - normally the height of a lower-case 'x' character.

	Since:
	2.11.18

	
getCapHeight

public abstract float getCapHeight()

Get the Cap-Height of the font - normally the height of an upper-case 'O' character

	Since:
	2.22.1

	
isEmbedded

public boolean isEmbedded()

Return true if this font is Embedded

	Since:
	2.24

	
setFeature

public void setFeature(String feature,
 boolean on)

 Set or clear an optional feature on a font. Since 2.22, this method
 calls setFeature(String,int) with an integer value of 0 for
 false or 1 for true.

	Parameters:
	feature - the feature name
	on - whether to set or clear the feature
	Since:
	2.11.21
	See Also:
	setFeature(String,int),
getAvailableFeatures(),
PDFStyle.setFontFeature(java.lang.String, boolean)

	
setFeature

public void setFeature(String feature,
 int value)

 Set or clear an optional feature on a font.

 For most fonts, the only possible features are:

 	"latinligatures", which controls the use of ligatures for "fi", "fl" and so on (defaults to on)
	"kerning" to turn on or off the standard inter-character kerning for fonts (defaults to on)
	"requote", to substitute typographically-correct quotes for plain ones.
	"italic", to slant text at 17° to synthesize an italic font (new in 2.22)
	"smallcaps", to synthesize small-caps in the font (new in 2.22). For more control, set a value from 2..100 to represent the percentage of the full font size
	"kashida", to allow arabic glyphs in this font to be justified with kashida justification. On by default (new in 2.23.4)
	"implied" determines how the text in a structured PDF is stored. If "implied" is on, then the value of the content is derived from the glyphs. If false, it's encoded explicitly if required, which is necessary to extract text that is shaped, like arabic or hindi. The only time you would turn this flag on is if you were creating a document in Arabic, Hindi or similar and reducing the filesize was more important than being able to extract text. The default is off (since 2.23.2)
	"synthesize-spaces", to synthesize the various Unicode spaces (if they're unavailable in this font) with a regular space and appropriate kerning (new in 2.23.6)
	"synthesize-hyphens", to synthesize U+2010 and U+2011 with a standard ASCII hyphen if they're unavailable in this font (new in 2.23.6)
	"superscript", to synthesize superscript positioning like the "sups" OpenType features new in 2.26.5)
	"subscript", to synthesize subscript positioning like the "subs" OpenType features new in 2.26.5)

 Some OpenType fonts have GPOS and
 GSUB tables
 which can be used to modify the glyphs that are
 displayed. This is required to display some languages correctly.

 To enable this type of glyph shaping, the font must be created using
 a 2-byte encoding and the "opentype" feature must first be set.
 This will cause the default set of OpenType features to be used for
 layout. The full list of features available in the font can be
 seen by calling the getAvailableFeatures() method (go
 here
 for their explanations), and individual
 features may then be turned on or off as required.

 Features that are
 required for correct layout (the case for Indic and Arabic scripts)
 will be selected by default when the "opentype" feature is set.

 The value parameter is typically just 0 to turn the feature
 off, non-zero (but traditinally 1) to turn it on. However some features
 do check the value of this; for example, "opentype.salt" and "opentype.swsh"
 will use this value to choose between the various alternates on offer. A value
 greater than the number of options available will have the same effect as a
 value of 0.

 By default, OpenType layout is not used, as it is considerably slower.
 When it is used the "latinligatures" feature becomes a no-op,
 as ligatures should be applied using these tables (typically via the
 "opentype.dlig" feature). The langauge of the Locale can affect which
 operations are run, so this should be set with care.

 Lastly, for OpenType fonts the "correctleading" feature can be set to use the correct
 calculation for getDefaultLeading() rather than the one originally
 used in the PDF Library. For many fonts the two calculations will give
 similar, often identical results, but for some fonts it won't so we can't
 change this calculation by default without forcing a re-layout of many
 existing documents. However we recommend setting this feature for all
 new documents. The initial value of this feature can be set to true
 by setting the OpenTypeCorrectLeading property

 Since 2.14.1 you can set these features on the PDFStyle
 referencing this font by calling the PDFStyle.setFontFeature(java.lang.String, boolean) method.
 This is preferable to calling this method, as it allows different
 features to be used on the font within the same LayoutBox. This
 method can still be used to set a font-wide default value for each feature.

	Parameters:
	feature - the feature name
	value - the value, which is 0 for off or any other value for on - for
 most features the value is ignored.
	Since:
	2.22

	
hasFeature

public boolean hasFeature(String feature)

Return true if the font contains the specified feature

	Since:
	2.22

	
getAvailableFeatures

public String[] getAvailableFeatures()

Return the list of available features for this font.

	Returns:
	a list of feature names that can be passed to PDFStyle.setFontFeature(java.lang.String, boolean)
	Since:
	2.11.22
	See Also:
	PDFStyle.setFontFeature(java.lang.String, boolean)

	
getFeature

public int getFeature(String feature)

Returns whether the specified feature is currently set for this font. A value of 0
 means not set, any other value means it is set - for most features that is enough,
 but a few will make use of the actual value to select between different variations
 of the feature, say for swash capitals.
 This method provides a default value for the value returned by PDFStyle.getFontFeature(java.lang.String).

	Parameters:
	feature - the feature name
	Returns:
	0 for off, or a value greater-than-or-equal to 1 for on.
	Since:
	2.11.23 (prior to 2.22 this method returned a boolean)
	See Also:
	PDFStyle.getFontFeature(java.lang.String)

	
versionItalic

public PDFFont versionItalic()

Return an italic version of the current font, if available.
 By default this just returns this font.

	Since:
	2.11

	
versionBold

public PDFFont versionBold()

Return a bold version of the current font, if available.
 By default this just returns this font.

	Since:
	2.11

	
versionNonBold

public PDFFont versionNonBold()

Return a non-bold version of the current font, if available.
 By default this just returns this font.

	Since:
	2.11

	
versionNonItalic

public PDFFont versionNonItalic()

Return a non-italic version of the current font, if available.
 By default this just returns this font.

	Since:
	2.11

	
versionRegular

public PDFFont versionRegular()

Return a non-bold, non-italic version of the current font, if available.
 By default this just returns this font.

	Since:
	2.11

	
setMetaData

public void setMetaData(String metadata)

 Set the XML metadata associated with this object.
 Since 2.26 this method
 calls getXMP().read(new StringReader(xmldata == null ? "" : xmldata)).
 We strongly recommend using the getXMP() method and modifying the XMP directly
 rather than using this method.

 Note for OpenType WOFF and WOFF2 fonts, the MetaData is transformed
 from the schema described in https://www.w3.org/TR/WOFF/#Metadata
 to an approximation of the same schema within the limitations of XMP.

	Parameters:
	metadata - the XML data to embed into the document, or null to clear any existing metadata. No validation is performed on this input.
	Since:
	2.24.3

	
getXMP

public XMP getXMP()

Return an XMP Metadata object representing any XML metadata associated with this object

	Returns:
	the XMP, which may be empty or invalid but wil never be null
	Since:
	2.26

	
getMetaData

public Reader getMetaData()
 throws IOException

 Return any XML metadata associated with this object.

 Since 2.26 this simply returns getXMP().isEmpty() ? null : new StringReader(getXMP().toString()).
 It is strongly recommended that any code migrates to using the getXMP() method.

 Since 2.24.3, the returned type is guaranteed to hava a toString() method that
 will return the Metadata as a String.

	Returns:
	a Reader containing the source of the XML or null if no metadata is available.
	Throws:
	IOException - if the metadata can't be extracted
	Since:
	2.24.3

	
isSubset

public boolean isSubset()

Return true if this font is Subset

	Since:
	2.24

	
getDefinedCodepoints

public abstract BitSet getDefinedCodepoints()

Return read-only BitSet containing all the Unicode codepoints
 defined in this font

	Since:
	2.23.2

	
toString

public String toString()

	
putLiteral

public void putLiteral(String key,
 String tokens)

Put a literal token sequnce. For debugging

	Parameters:
	key - the key
	tokens - the token sequence, eg "true" or "/foo" or "[/Foo/Bar]". No refs, just direct objects.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2024 Big Faceless Organization

