

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Interface PDFDrawable

	
	All Known Implementing Classes:
	PDFCanvas, PDFPage

public interface PDFDrawable

 This interface is implemented by PDFPage and PDFDrawable, and covers all of
 the operations common to both used to place content (graphics, images
 and text) onto the output.

	Since:
	2.21

	

	

Method Summary

All Methods Instance Methods Abstract Methods 	Modifier and Type	Method	Description
	void	beginTag(String tag,
 Map<String,Object> atts)	

 Open a structural tag on this page.

	void	clipCircle(float x,
 float y,
 float radius)	
Set the clipping area to a circle centered on x, y
 with a radius of radius.

	void	clipEllipse(float x1,
 float y1,
 float x2,
 float y2)	

 Set the clipping area to the ellipse inside the specified rectangle.

	void	clipPolygon(float[] x,
 float[] y)	

 Set the clipping area to a polygon.

	void	clipRectangle(float x1,
 float y1,
 float x2,
 float y2)	

 Set the clipping area to the rectangle which runs through
 the two corners x1,y1 and x2,y2.

	void	clipRoundedRectangle(float x1,
 float y1,
 float x2,
 float y2,
 float r)	

 Set the clipping area to a rectangle with rounded corners which runs through
 the two corners x1,y1 and x2,y2.

	void	clipShape(Shape shape)	
Clip a Shape

	void	drawCanvas(PDFCanvas canvas,
 float x1,
 float y1,
 float x2,
 float y2)	
Draw a PDFCanvas at the specified position on the page.

	void	drawCircle(float x,
 float y,
 float radius)	
Draw a circle centered on x, y
 with a radius of radius.

	void	drawCircleArc(float x,
 float y,
 float radius,
 float start,
 float end)	
Draw an arc of the circle centered on x,y with the specified radius.

	void	drawEllipse(float x1,
 float y1,
 float x2,
 float y2)	

 Draw an ellipse inside the specified rectangle.

	void	drawEllipseArc(float x1,
 float y1,
 float x2,
 float y2,
 float start,
 float end)	

 Draw an ellipse arc inside the specified rectangle.

	void	drawGlyphVector(PDFGlyphVector gv,
 float x,
 float y)	
Draw a PDFGlyphVector onto the drawable.

	void	drawImage(PDFImage image,
 float x1,
 float y1,
 float x2,
 float y2)	
Draw a PDFImage at the specified position on the page

	void	drawLayoutBox(LayoutBox box,
 float x,
 float y)	
Draw a LayoutBox at the specified position on the page

	void	drawLine(float x1,
 float y1,
 float x2,
 float y2)	
Draw a line from x1,y1 to x2,y2.

	void	drawPolygon(float[] x,
 float[] y)	

 Draw a polygon.

	void	drawRectangle(float x1,
 float y1,
 float x2,
 float y2)	

 Draw a rectangle through the two corners x1,y1 and x2,y2.

	void	drawRoundedRectangle(float x1,
 float y1,
 float x2,
 float y2,
 float r)	

 Draw a rectangle with rounded corners through the two corners
 x1,y1 and x2,y2.

	void	drawShape(Shape shape)	
Draw a Shape.

	void	endTag()	
Close a structural tag on this page.

	void	flush()	

 This method flushes any operations that have been written to the drawable object.

	ColorSpace	getDefaultColorSpace(int components)	

 Return the ColorSpace used by this Drawable to anchor device-dependent
 colors to a profile.

	boolean	pathArc(float width,
 float height,
 float start,
 float end)	
Continue the open path in an arc to the specified position.

	boolean	pathBezier(float cx1,
 float cy1,
 float cx2,
 float cy2,
 float x,
 float y)	
Continue the open path in a bezier curve to the specified position.

	void	pathCancel()	
Cancel the current path

	void	pathClip()	

 Close the path and set the "clipping area" of the page to be the intersection of
 the current clipping area and the shape defined by this path.

	void	pathClipAndPaint()	
Close and paint the path as described in pathPaint(), then set the
 clipping area to the same are as described in pathClip()

	void	pathClose()	
Close the path by drawing a straight line back to its beginning.

	boolean	pathLine(float x,
 float y)	
Continue the open path in a straight line to the specified position.

	void	pathMove(float x,
 float y)	
Start a new path at the specified position.

	void	pathPaint()	
Close and paint the path.

	boolean	pathShape(Shape shape)	
Add the path specified by a Shape to the Canvas

	void	rawWrite(String data)	
Write raw PDF commands to the drawable.

	void	restore()	
Restore the state that was saved with the last call to save()

	void	rotate(float x,
 float y,
 double ang)	
Rotate the drawable around the specified point by the specified
 number of degrees.

	void	save()	

 Save the state of this page.

	void	setDefaultColorSpace(int components,
 ColorSpace cs)	
Set the ColorSpace to use to anchor device-dependent colors on this
 Drawable, as described by getDefaultColorSpace(int).

	void	setMetaData(String xmldata)	
Set the XML metadata associated with this object.

	void	setStyle(PDFStyle style)	
Set the style for this Canvas

	void	transform(double m00,
 double m10,
 double m01,
 double m11,
 double m02,
 double m12)	
Apply an Affine Transformation to the drawable.

	void	transform(AffineTransform transform)	
Apply an Affine Transformation to the drawable.

	

	

Method Detail

	
flush

void flush()

 This method flushes any operations that have been written to the drawable object.

	Throws:
	IllegalStateException - if the drawable is incomplete - you have an open path
 or a save() without a matching restore().

	
rawWrite

void rawWrite(String data)

Write raw PDF commands to the drawable. This is for advanced users
 only, but does allow those intimately familiar with the PDF specification
 to perform some of the more esoteric actions that aren't directly
 supported by the PDF library. Using this method it is easy to create
 invalid PDF documents, so use with caution.

	Parameters:
	data - the PDF operations to write to the stream, for instance "/Perceptual ri" to set the RenderingIntent. Line breaks will be added before and after the specified string.

	
setStyle

void setStyle(PDFStyle style)

Set the style for this Canvas

	
drawLine

void drawLine(float x1,
 float y1,
 float x2,
 float y2)

Draw a line from x1,y1 to x2,y2.

	Parameters:
	x1 - the X co-ordinate of the start of the line
	y1 - the Y co-ordinate of the start of the line
	x2 - the X co-ordinate of the end of the line
	y2 - the Y co-ordinate of the end of the line

	
drawRectangle

void drawRectangle(float x1,
 float y1,
 float x2,
 float y2)

 Draw a rectangle through the two corners x1,y1 and x2,y2.
 Whether the rectangle is drawn as an outline or filled depends on the
 LineColor and FillColor of the current style (see the
 pathPaint() method for more information).

	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle

	
drawRoundedRectangle

void drawRoundedRectangle(float x1,
 float y1,
 float x2,
 float y2,
 float r)

 Draw a rectangle with rounded corners through the two corners
 x1,y1 and x2,y2.
 Whether the rectangle is drawn as an outline or filled depends on the
 LineColor and FillColor of the current style (see the
 pathPaint() method for more information).

	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle
	r - The radius of the circle that is used to round the corners. A value of zero give identical results to drawRectangle(float, float, float, float)

	
drawPolygon

void drawPolygon(float[] x,
 float[] y)

 Draw a polygon. The X and Y co-ordinates of the vertices are
 in the supplied arrays. Whether the polygon is drawn as an
 outline or filled depends on the LineColor and
 FillColor of the current style (see the
 pathPaint() method for more information).

 If the fill color is specified the polygon will be closed
 automatically if it isn't already.

	Parameters:
	x - the X co-ordinates of the vertices
	y - the Y co-ordinates of the vertices

	
drawCircle

void drawCircle(float x,
 float y,
 float radius)

Draw a circle centered on x, y
 with a radius of radius. A more convenient way to
 draw circles than drawEllipse

	Parameters:
	x - the X co-ordinate of the center of the circle
	y - the Y co-ordinate of the center of the circle
	radius - the radius of the circle

	
drawEllipse

void drawEllipse(float x1,
 float y1,
 float x2,
 float y2)

 Draw an ellipse inside the specified rectangle. The top and sides
 of the ellipse will touch the edges of the rectangle drawn between
 x1,y1 and x2,y2.

 Whether the ellipse is drawn as an outline or filled depends on the
 LineColor and FillColor of the current style
 (see the pathPaint() method for more information).

	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle

	
drawEllipseArc

void drawEllipseArc(float x1,
 float y1,
 float x2,
 float y2,
 float start,
 float end)

 Draw an ellipse arc inside the specified rectangle. The same as
 drawEllipse, but allows you to specify a start and end angle.
 If a FillColor is specified, the arc will be closed with a straight line.

	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle
	start - the start angle of the arc, in degrees clockwise from 12 o'clock
	end - the end angle of the arc, in degrees clockwise from 12 o'clock

	
drawCircleArc

void drawCircleArc(float x,
 float y,
 float radius,
 float start,
 float end)

Draw an arc of the circle centered on x,y with the specified radius.
 A more convenient way to draw circular arcs than drawEllipseArc
 If a FillColor is specified, the arc will be closed with a straight line.

	Parameters:
	x - the X co-ordinate of the center of the circle
	y - the Y co-ordinate of the center of the circle
	radius - the radius of the circle
	start - the start angle of the arc, in degrees clockwise from 12 o'clock
	end - the end angle of the arc, in degrees clockwise from 12 o'clock

	
drawShape

void drawShape(Shape shape)

Draw a Shape.
 If the fill color is specified the Shape will be closed
 automatically if it isn't already.

	
drawGlyphVector

void drawGlyphVector(PDFGlyphVector gv,
 float x,
 float y)

Draw a PDFGlyphVector onto the drawable. See that class for
 an example of how to use this method.

	Parameters:
	gv - the PDFGlyphVector to draw
	x - the X co-ordinate to position the left edge of the PDFGlyphVector
	y - the Y co-ordinate to position the baseline of the PDFGlyphVector
	See Also:
	PDFGlyphVector,
PDFStyle.createGlyphVector(java.lang.String, java.util.Locale)

	
clipRectangle

void clipRectangle(float x1,
 float y1,
 float x2,
 float y2)

 Set the clipping area to the rectangle which runs through
 the two corners x1,y1 and x2,y2.

	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle

	
clipRoundedRectangle

void clipRoundedRectangle(float x1,
 float y1,
 float x2,
 float y2,
 float r)

 Set the clipping area to a rectangle with rounded corners which runs through
 the two corners x1,y1 and x2,y2.

	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle
	r - The radius of the circle that is used to round the corners. A value of zero give identical results to drawRectangle(float, float, float, float)

	
clipPolygon

void clipPolygon(float[] x,
 float[] y)

 Set the clipping area to a polygon. The X and Y co-ordinates
 of the vertices are in the supplied arrays.

	Parameters:
	x - the X co-ordinates of the vertices
	y - the Y co-ordinates of the vertices

	
clipEllipse

void clipEllipse(float x1,
 float y1,
 float x2,
 float y2)

 Set the clipping area to the ellipse inside the specified rectangle.
 The top and sides of the ellipse will touch the edges of the rectangle
 drawn between x1,y1 and x2,y2.

	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle

	
clipCircle

void clipCircle(float x,
 float y,
 float radius)

Set the clipping area to a circle centered on x, y
 with a radius of radius.

	Parameters:
	x - the X co-ordinate of the center of the circle
	y - the Y co-ordinate of the center of the circle
	radius - the radius of the circle

	
clipShape

void clipShape(Shape shape)

Clip a Shape

	
pathMove

void pathMove(float x,
 float y)

Start a new path at the specified position. If a path has
 already been started, move the cursor without drawing a line.

	Parameters:
	x - the X co-ordinate to move to
	y - the Y co-ordinate to move to

	
pathLine

boolean pathLine(float x,
 float y)

Continue the open path in a straight line to the specified position.

	Parameters:
	x - the X co-ordinate to move to
	y - the Y co-ordinate to move to
	Returns:
	true if any sections were drawn in the path
	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)

	
pathBezier

boolean pathBezier(float cx1,
 float cy1,
 float cx2,
 float cy2,
 float x,
 float y)

Continue the open path in a bezier curve to the specified position.

	Parameters:
	cx1 - the X co-ordinate of the first control point for the curve
	cy1 - the Y co-ordinate of the first control point for the curve
	cx2 - the X co-ordinate of the second control point for the curve
	cy2 - the Y co-ordinate of the second control point for the curve
	x - the X co-ordinate to move to
	y - the Y co-ordinate to move to
	Returns:
	true if any sections were drawn in the path
	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)

	
pathArc

boolean pathArc(float width,
 float height,
 float start,
 float end)

Continue the open path in an arc to the specified position.

	Parameters:
	width - the width of the ellipse to take the arc from
	height - the height of the ellipse to take the arc from
	start - the start angle of the arc, in degrees clockwise from 12 o'clock
	end - the end angle of the arc, in degrees clockwise from 12 o'clock
	Returns:
	true if any sections were drawn in the path
	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)

	
pathShape

boolean pathShape(Shape shape)

Add the path specified by a Shape to the Canvas

	Parameters:
	shape - the shape
	Returns:
	true if any sections were drawn on the path

	
pathClose

void pathClose()

Close the path by drawing a straight line back to its beginning.
 This does not complete the path, you still need to complete it with
 pathPaint() or pathCancel()

	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)

	
pathCancel

void pathCancel()

Cancel the current path

	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)

	
pathPaint

void pathPaint()

Close and paint the path. What this actually does depends on the currently
 applied PDFStyle
 	If the style has a LineColor specified but no FillColor, "stroke"
 the path by drawing it as an outline in the current line color
	If the style has a FillColor specified but no LineColor, call
 pathClose() and "fill" the path with the current fill color
	If the style has both a FillColor and a LineColor, call pathClose(), "fill" the path with the current fill color then "stroke"
 the path with the current line color.

	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float),
 or if neither a fill nor line color has been specified.

	
pathClipAndPaint

void pathClipAndPaint()

Close and paint the path as described in pathPaint(), then set the
 clipping area to the same are as described in pathClip()

	
pathClip

void pathClip()

 Close the path and set the "clipping area" of the page to be the intersection of
 the current clipping area and the shape defined by this path.
 Any future graphics or text operations on the page are only
 applied within this area.

 There is no way to enlarge the current clipping area, or to set
 a new clipping area without reference to the current one. However,
 as the current clipping area is part of the graphics state, it
 can and should be nested inside calls to save() and
 restore() to limit its effect.

	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)

	
save

void save()

 Save the state of this page. This takes a snapshot of the currently applied
 style, position, clipping area and any rotation/translation/scaling that has
 been applied, which can be later restored with a call to restore()

 Calls to save can be nested, but note that for most PDF viewers
 it is an error to save the page state but not restore it.

	Throws:
	IllegalStateException - if a save is performed with an open path or if
 saves are nested more than 28 deep.

	
restore

void restore()

Restore the state that was saved with the last call to save()

	Throws:
	IllegalStateException - if there is no previously saved state

	
rotate

void rotate(float x,
 float y,
 double ang)

Rotate the drawable around the specified point by the specified
 number of degrees. All further draw/path/clip actions on this
 drawable will be adjusted accordingly. The best way to get back
 to normal after a rotate is to wrap the rotate inside a save()/restore()
 block, eg.

 canvas.save();
 canvas.rotate(100,100,45);
 canvas.drawLayoutBox(rotatedtext, 100, 100);
 canvas.restore();

	
transform

void transform(AffineTransform transform)

Apply an Affine Transformation to the drawable.

	
transform

void transform(double m00,
 double m10,
 double m01,
 double m11,
 double m02,
 double m12)

Apply an Affine Transformation to the drawable. The six arguments are the same 6 arguments
 passed in to the AffineTransform constructor, in the same same
 order.

	
drawImage

void drawImage(PDFImage image,
 float x1,
 float y1,
 float x2,
 float y2)

Draw a PDFImage at the specified position on the page

	Parameters:
	image - the image to draw
	x1 - the X co-ordinate of the left hand side of the image
	y1 - the Y co-ordinate of the bottom side of the image
	x2 - the X co-ordinate of the right hand side of the image
	y2 - the Y co-ordinate of the top side of the image

	
drawCanvas

void drawCanvas(PDFCanvas canvas,
 float x1,
 float y1,
 float x2,
 float y2)

Draw a PDFCanvas at the specified position on the page.

	Parameters:
	canvas - the canvas to draw
	x1 - the X co-ordinate of the left hand side of the image
	y1 - the Y co-ordinate of the bottom side of the image
	x2 - the X co-ordinate of the right hand side of the image
	y2 - the Y co-ordinate of the top side of the image
	Throws:
	IllegalArgumentException - if the canvas being drawn is this canvas - recursion is not allowed.

	
beginTag

void beginTag(String tag,
 Map<String,Object> atts)

 Open a structural tag on this page. This call must be matched by a later call to endTag().

 Structural tags add a tree structure on top of the otherwise flat
 structure of a PDF. They are primarily used to meet accesibility
 requirements, and so may be required for certain subsets of PDF
 such as PDF/A-1a. Using the beginTag and endtag
 methods is fairly simple and should be familiar to anytone that has used SAX or HTML:

 PDFCanvas canvas = new PDFCanvas(width, height);
 canvas.beginTag("Sect", null);
 LayoutBox box = new LayoutBox(600);
 box.addText("He said '", style, null);
 Map<String,Object> atts = new HashMap<String,Object>();
 atts.put("id", "quote1");
 box.beginTag("Quote", atts);
 box.addText("This is a contrived example", boldstyle, null);
 box.endTag();
 canvas.drawLayoutBox(box, x, y);
 canvas.endTag();

 Calls to beginTag must be matched to calls to endTag for each object - the methods exist in
 PDFPage, PDFCanvas and LayoutBox.

 While in general any values for tag are allowed, the following are suggested by the PDF specification

 	Part	Part - A large-scale division of a document. This type of element is appropriate for grouping articles or sections.
	Art	Article - A relatively self-contained body of text constituting a single narrative or exposition. Articles should be disjoint; that is, they should not contain other articles as constituent elements.
	Sect	Section - A container for grouping related content elements. For example, a section might contain a heading, several introductory paragraphs, and two or more other sections nested within it as subsections.
	Div	Division A generic block-level element or group of elements.
	BlockQuote	Block quotation - A portion of text consisting of one or more paragraphs attributed to someone other than the author of the surrounding text.
	Caption	Caption - A brief portion of text describing a table or figure.
	TOC	Table Of Contents - A list made up of table of contents item entries (structure type TOCI) and/or other nested table of contents entries (TOC).

A TOC entry that includes only TOCI entries represents a flat hierarchy. A TOC entry that includes other nested TOC entries (and possibly TOCI entries) represents a more complex hierarchy. Ideally, the hierarchy of a top level TOC entry reflects the structure of the main body of the document.

Lists of figures and tables, as well as bibliographies, can be treated as tables of contents for purposes of the standard structure types.
	TOCI	Table of Contents Item - This entry’s children may be any of the following structure types: Lbl, Reference, NonStruct, P or TOC
	Index	A sequence of entries containing identifying text accompanied by Reference elements that point out occurrences of the specified text in the main body of a document.
	NonStruct	Nonstructural element - A grouping element having no inherent structural significance; it serves solely for grouping purposes. This type of element differs from a Div in that it shall not be interpreted or exported to other document formats; however, its descendants shall be processed normally.
	Private	Private Element - A grouping element containing private content belonging to the application producing it. The structural significance of this type of element is unspecified and shall be determined entirely by the conforming writer. Neither the Private element nor any of its descendants shall be interpreted or exported to other document formats.
	H	Heading - A label for a subdivision of a document’s content. It should be the first child of the Div that it heads.
	H1, H2, H3, H4, H5, H6	Heading with specific levels - For use in conforming writers that cannot hierarchically nest their sections and thus cannot determine the level of a heading from its level of nesting.
	P	Paragraph - A low-level division of text.
	L	List - A sequence of items of like meaning and importance. Its immediate children should be an optional Caption followed by one or more LI
	LI	List Item - An individual member of a list. Its children may be one or more combinations of Lbl or LBody
	Lbl	Label - A name or number that distinguishes a given item from others in the same list or other group of like items. In a dictionary list, for example, it contains the term being defined; in a bulleted or numbered list, it contains the bullet character or the number of the list item and associated punctuation.
	LBody	List Body - The descriptive content of a list item. In a dictionary list, for example, it contains the definition of the term. It may either contain the content directly or have other block-level items, perhaps including nested lists, as children.
	Table	Table - A two-dimensional layout of rectangular data cells, possibly having a complex substructure. It contains either one or more TR as children; or an optional THead followed by one or more TBody and an optional TFoot. In addition, a table may have a Caption as its first or last child.
	TR	Table Row - A row of headings or data in a table. It may contain TH and TD
	TH	Table Header Cell - A table cell containing header text describing one or more rows or columns of the table.
	TD	Table Data Cell - A table cell containing data that is part of the table’s content.
	THead	Table header row group - A group of rows that constitute the header of a table. If the table is split across multiple pages, these rows may be redrawn at the top of each table fragment (although there is only one THead element).
	TBody	Table body row group - A group of rows that constitute the main body portion of a table. If the table is split across multiple pages, the body area may be broken apart on a row boundary. A table may have multiple TBody elements to allow for the drawing of a border or background for a set of rows.
	TFoot	Table footer row group - A group of rows that constitute the footer of a table. If the table is split across multiple pages, these rows may be redrawn at the bottom of each table fragment (although there is only one TFoot element.)
	Span	Span - A generic inline portion of text having no particular inherent characteristics. It can be used, for example, to delimit a range of text with a given set of styling attributes, although it's not necessary to identify italic or bold text with a Span (as in HTML), as this can be derived from the text.
	Quote	Quotation - An inline portion of text attributed to someone other than the author of the surrounding text. The quoted text should be contained inline within a single paragraph. This differs from the block-level element BlockQuote, which consists of one or more complete paragraphs (or other elements presented as if they were complete paragraphs).
	Note	Note - An item of explanatory text, such as a footnote or an endnote, that is referred to from within the body of the document. It may have a Lbl as a child. The note may be included as a child of the structure element in the body text that refers to it, or it may be included elsewhere (such as in an endnotes section) and accessed by means of a Reference.
	Reference	Reference - A citation to content elsewhere in the document.
	BibEntry	Bibliographic entry - A reference identifying the external source of some cited content. It may contain a Lbl as a child.

Although a bibliography entry is likely to include component parts identifying the cited content’s author, work, publisher, and so forth, no standard structure types are defined at this level of detail.
	Code	Code entry - A fragment of computer program text
	Link	Link - An association between a portion of the inline items’s content and a corresponding AnnotationLink. Its children should be one or more content items or child inline items and one or more object references identifying the associated annotations.
	Annot	Annotation - An association between a portion of the inline items’s content and a corresponding PDFAnnotation. Its children should be one or more content items or child inline items and one or more object references identifying the associated annotations.
	Artifact	Artifact - Used to mark a section of text as a rendering artifact only. Artifacts are not considered part of the logical document structure. They take no attributes.

 Attributes for structural tags are unfortunately somewhat overengineered in the specification. For now we
 will recognise and handle appropriately the following attributes.

 	id	The ID for this node - should be unique across the PDF (the "ID" attribute)
	class or C	One or more class names for this node, separated by spaces (the "C" attribute)
	title or T	The optional human-readable description for the tag, eg "Chapter 1" (the "T" attribute)
	lang	The optional language code for the tag and its childen, can be a String or a Locale. An alternative to setting a Locale on the text, it is recommended not to mix the two approaches - if you're using beginTag/endTag, leave the locale in any calls to LayoutBox.addText() as null (the "Lang" attribute)
	alt	The alternate description for the structure element and its childen in human readable form (the "Alt" attribute).
	text or ActualText	Text that is an exact replacement for the structure element and its children. This can be used when the actual PDF text is being added in a font without a correct Unicode mapping, when text is being added as an image, or when text is known to be broken over several lines (for example) (the "ActualText" attribute)
	abbr or E	When an abbreviation is used, this attribute can be set to the unabbreviated version (the "E" attribute)
	annotation	For Link or Annot tags, the PDFAnnotation they refer to
	bfo:key	Optional, representing the document-wide unique ID of this node. Duplicate nodes with the same bfo:key will be merged in the tree
	bfo:pdf	Required if bfo:key is set - this must be the PDF this object will be added to
	bfo:pos	Optional. If set to "end", all items in the tree with the same bfo:key as this one will be merged with this element

 Any attribute not described here will be stored in the document structure.
 Attributes may optionally be prefixed by an "owner" - the PDF Structure Tree version of an XML Namespace.
 For PDF/UA compliance this is a requirement for certain tags, and the attribute owners are described
 in section 14.8.5.2 of ISO/IEC 32000 (version 1). For example, a "TH" tag is supposed to specify a
 "Scope" attribute, which you could do as follows:

 Map<String,Object> atts = new HashMap<String,Object>();
 atts.put("Table:Scope", "Both");

	Parameters:
	tag - name of the tag
	atts - user defined attributes for this tag, or null
	See Also:
	PDFPage.beginTag(java.lang.String, java.util.Map<java.lang.String, java.lang.Object>),
LayoutBox.beginTag(java.lang.String, java.util.Map<java.lang.String, java.lang.Object>),
endTag(),
PDFPage.endTag(),
LayoutBox.endTag(),
PDFParser.getStructureTree(),
PDF.rebuildStructureTree()

	
endTag

void endTag()

Close a structural tag on this page. This call must match
 an earlier call to beginTag()

	See Also:
	beginTag(java.lang.String, java.util.Map<java.lang.String, java.lang.Object>)

	
drawLayoutBox

void drawLayoutBox(LayoutBox box,
 float x,
 float y)

Draw a LayoutBox at the specified position on the page

	Parameters:
	box - the LayoutBox to draw
	x - the X co-ordinate of the left hand side of the box
	y - the Y co-ordinate of the top side of the box

	
setMetaData

void setMetaData(String xmldata)

Set the XML metadata associated with this object. See
 PDF.setMetaData(java.lang.String) for more information.

	Parameters:
	xmldata - the XML data to embed into the document, or null to clear any existing metadata. No validation is performed on this input.

	
getDefaultColorSpace

ColorSpace getDefaultColorSpace(int components)

 Return the ColorSpace used by this Drawable to anchor device-dependent
 colors to a profile. For example, the ColorSpace returned by
 getDefaultColorSpace(3) is used by all "Device RGB" colors
 on the page, effectively turning them into calibrated colors.

 The PDF API automatically sets a calibrated sRGB ColorSpace as the
 ColorSpace for all DeviceRGB content on the page. Unlike the use of
 "Output Intents" on the OutputProfile class, multiple ColorSpaces
 can be set, one each for Gray, RGB, and CMYK. This is a cheap way to
 convert pages containing both DeviceRGB and DeviceCMYK to using calibrated
 colors.

	Parameters:
	components - identifies the Default ColorSpace we're requesting - valid
 values are 1 for Gray, 3 for RGB or 4 for CMYK.
	Returns:
	the Default ColorSpace requested, or null if none is set.
	Since:
	2.25

	
setDefaultColorSpace

void setDefaultColorSpace(int components,
 ColorSpace cs)

Set the ColorSpace to use to anchor device-dependent colors on this
 Drawable, as described by getDefaultColorSpace(int).

	Parameters:
	components - identifies the Default ColorSpace to set - valid values are
 1 for Gray, 3 for RGB or 4 for CMYK.
	cs - the ColorSpace to set, which must be either null (to delete the existing value) or a ColorSpace of a type that matches the "components" parameter.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2024 Big Faceless Organization

