

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.3

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class PDFCanvas

	java.lang.Object
	
	org.faceless.pdf2.PDFCanvas

	
	All Implemented Interfaces:
	Cloneable, PDFDrawable

public class PDFCanvas
extends Object
implements PDFDrawable

 This class represents a the visible content of a page, annotation or similar.
 Basically everything which is displayed in a document - pages, annotations,
 form fields and so on - has a Canvas at it's heart. In the PDF spec this
 is known as a "Content Stream".

 Using a Canvas is very similar to using a PDFPage - it's created, it's
 width is specified and content is drawn onto it. Once created, a Canvas can
 be used as the basis for a PDFImage or PDFPattern and applied
 to a page.

	Since:
	2.0

	

	

Constructor Summary

Constructors 	Constructor	Description
	PDFCanvas(float width,
 float height)	
Create a new blank canvas of the specified width and height

	PDFCanvas(float width,
 float height,
 float opacity)	
Create a new blank canvas of the specified width and height
 and with the specified opacity.

	PDFCanvas(float width,
 float height,
 float opacity,
 String blendmode)	
Create a new blank canvas of the specified width and height
 and with the specified opacity.

	PDFCanvas(String pattern,
 float opacity)	
Load the specified resource as a canvas.

	PDFCanvas(PDFCanvas canvas)	
Create a new Canvas that's a clone of the specified PDFCanvas.

	PDFCanvas(PDFPage page)	
Create a new Canvas that's a clone of the specified PDFPage.

	

Method Summary

All Methods Instance Methods Concrete Methods Deprecated Methods 	Modifier and Type	Method	Description
	void	beginTag(String tag,
 Map<String,Object> atts)	

 Open a structural tag on this page.

	void	clipCircle(float x,
 float y,
 float radius)	
Set the clipping area to a circle centered on x, y
 with a radius of radius.

	void	clipEllipse(float x1,
 float y1,
 float x2,
 float y2)	

 Set the clipping area to the ellipse inside the specified rectangle.

	void	clipPolygon(float[] x,
 float[] y)	

 Set the clipping area to a polygon.

	void	clipRectangle(float x1,
 float y1,
 float x2,
 float y2)	

 Set the clipping area to the rectangle which runs through
 the two corners x1,y1 and x2,y2.

	void	clipRoundedRectangle(float x1,
 float y1,
 float x2,
 float y2,
 float r)	

 Set the clipping area to a rectangle with rounded corners which runs through
 the two corners x1,y1 and x2,y2.

	void	clipShape(Shape shape)	
Clip a Shape

	protected Object	clone()	
	Graphics2D	createGraphics(PDF pdf)	

 Return a Graphics2D implementation that renders to this PDFCanvas.

	void	drawCanvas(PDFCanvas canvas,
 float x1,
 float y1,
 float x2,
 float y2)	
Draw a PDFCanvas at the specified position on the page.

	void	drawCircle(float x,
 float y,
 float radius)	
Draw a circle centered on x, y
 with a radius of radius.

	void	drawCircleArc(float x,
 float y,
 float radius,
 float start,
 float end)	
Draw an arc of the circle centered on x,y with the specified radius.

	void	drawEllipse(float x1,
 float y1,
 float x2,
 float y2)	

 Draw an ellipse inside the specified rectangle.

	void	drawEllipseArc(float x1,
 float y1,
 float x2,
 float y2,
 float start,
 float end)	

 Draw an ellipse arc inside the specified rectangle.

	void	drawGlyphVector(PDFGlyphVector gv,
 float x,
 float y)	
Draw a PDFGlyphVector onto the canvas.

	void	drawImage(PDFImage image,
 float x1,
 float y1,
 float x2,
 float y2)	
Draw a PDFImage at the specified position on the page

	void	drawLayoutBox(LayoutBox box,
 float x,
 float y)	
Draw a LayoutBox at the specified position on the page

	void	drawLine(float x1,
 float y1,
 float x2,
 float y2)	
Draw a line from x1,y1 to x2,y2.

	void	drawPolygon(float[] x,
 float[] y)	

 Draw a polygon.

	void	drawRectangle(float x1,
 float y1,
 float x2,
 float y2)	

 Draw a rectangle through the two corners x1,y1 and x2,y2.

	void	drawRoundedRectangle(float x1,
 float y1,
 float x2,
 float y2,
 float r)	

 Draw a rectangle with rounded corners through the two corners
 x1,y1 and x2,y2.

	void	drawShape(Shape shape)	
Draw a Shape.

	void	endTag()	
Close a structural tag on this page.

	void	flush()	

 This method flushes any operations that have been written to the canvas, and closes
 the stream for further writes.

	float[]	getBox()	
Return the canvas box, as set in the constructor or by setBox(float, float, float, float)

	ColorSpace	getDefaultColorSpace(int components)	

 Return the ColorSpace used by this Drawable to anchor device-dependent
 colors to a profile.

	float	getHeight()	
Return the width of the canvas

	OptionalContentDescriptor	getOptionalContentDescriptor()	
Return the OptionalContentDescriptor previously set by setOptionalContentDescriptor(org.faceless.pdf2.OptionalContentDescriptor)

	AffineTransform	getTransform()	
Return a copy of the transform currently applied to the PDFCanvas

	float	getWidth()	
Return the width of the canvas

	XMP	getXMP()	
Return an XMP Metadata object representing any XML metadata associated with this object

	boolean	pathArc(float width,
 float height,
 float start,
 float end)	
Continue the open path in an arc to the specified position.

	boolean	pathBezier(float cx1,
 float cy1,
 float cx2,
 float cy2,
 float x,
 float y)	
Continue the open path in a bezier curve to the specified position.

	void	pathCancel()	
Cancel the current path

	void	pathClip()	

 Close the path and set the "clipping area" of the page to be the intersection of
 the current clipping area and the shape defined by this path.

	void	pathClipAndPaint()	
Close and paint the path as described in pathPaint(), then set the
 clipping area to the same are as described in pathClip()

	void	pathClose()	
Close the path by drawing a straight line back to its beginning.

	boolean	pathLine(float x,
 float y)	
Continue the open path in a straight line to the specified position.

	void	pathMove(float x,
 float y)	
Start a new path at the specified position.

	void	pathPaint()	
Close and paint the path.

	boolean	pathShape(Shape shape)	
Add the path specified by a Shape to the Canvas

	void	putLiteral(String key,
 String tokens)	
Put a literal token sequnce.

	void	rawWrite(String data)	
Write raw PDF commands to the canvas.

	void	restore()	
Restore the state that was saved with the last call to save()

	void	rotate(float x,
 float y,
 double ang)	
Rotate the canvas around the specified point by the specified
 number of degrees.

	void	save()	

 Save the state of this page.

	void	setBox(float x1,
 float y1,
 float x2,
 float y2)	
Set the canvas box.

	void	setDefaultColorSpace(int components,
 ColorSpace cs)	
Set the ColorSpace to use to anchor device-dependent colors on this
 Drawable, as described by PDFDrawable.getDefaultColorSpace(int).

	void	setMask(PDFCanvas mask,
 boolean alpha)	

 Set the mask which will be applied when this canvas is drawn to a parent
 PDFCanvas or PDFPage.

	void	setMetaData(String xmldata)	
Set the XML metadata associated with this object.

	void	setOptionalContentDescriptor(OptionalContentDescriptor descriptor)	
Set the OptionalContentDescriptor on this canvas, which can be a OptionalContentLayer
 or a logical expression containing several layers.

	void	setPDF(PDF pdf)	
"Attach" this PDFCanvas to the specified PDF.

	void	setStyle(PDFStyle style)	
Set the style for this Canvas

	void	setWatermarkOrBackground(boolean screen,
 boolean print)	
Deprecated.
this method hasn't worked for some time.

	String	toString()	
	void	transform(double m00,
 double m10,
 double m01,
 double m11,
 double m02,
 double m12)	
Concatenate an AffineTransform to the canvases current
 transform.

	void	transform(AffineTransform transform)	
Concatenate an AffineTransform to the canvases current
 transform.

	

Methods inherited from class java.lang.Object

equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

	

	

Constructor Detail

	
PDFCanvas

public PDFCanvas(float width,
 float height)

Create a new blank canvas of the specified width and height

	Parameters:
	width - the canvas width in points
	height - the canvas height in points

	
PDFCanvas

public PDFCanvas(float width,
 float height,
 float opacity)

Create a new blank canvas of the specified width and height
 and with the specified opacity. The Canvas will form a transparency
 group of the specified opacity.

	Parameters:
	width - the canvas width in points
	height - the canvas height in points
	opacity - the opacity of the canvas - from 1 (opaque) to 0 (transparent)
	Since:
	2.7.2

	
PDFCanvas

public PDFCanvas(float width,
 float height,
 float opacity,
 String blendmode)

Create a new blank canvas of the specified width and height
 and with the specified opacity. The Canvas will form a transparency
 group of the specified opacity.

	Parameters:
	width - the canvas width in points
	height - the canvas height in points
	opacity - the opacity of the canvas - from 1 (opaque) to 0 (transparent)
	blendmode - the BlendMode of the canvas - see PDFStyle.setBlendMode(java.lang.String) for valid values
	Since:
	2.22

	
PDFCanvas

public PDFCanvas(PDFPage page)

Create a new Canvas that's a clone of the specified PDFPage.
 Since 2.2 the page must have had the PDFPage.flush()
 method called on it first, otherwise an IllegalStateException is thrown.
 If the page has a CropBox defined that will be used as the size of the
 canvas, not the MediaBox (which is what is returned from
 PDFPage.getWidth() and PDFPage.getHeight()). If this isn't
 the intention you can reset the CropBox before creating the canvas using
 the setBox method.

	Since:
	2.0
	See Also:
	PDFPage.setBox(java.lang.String, float, float, float, float)

	
PDFCanvas

public PDFCanvas(PDFCanvas canvas)

Create a new Canvas that's a clone of the specified PDFCanvas.
 Since 2.2 the canvas passed in must have had flush() called
 on it first, otherwise an Exception is thrown.

	Since:
	2.0

	
PDFCanvas

public PDFCanvas(String pattern,
 float opacity)
 throws MissingResourceException

Load the specified resource as a canvas.

	Parameters:
	pattern - the name of the resource to load, eg "stamp.stencil.Confidential"
	opacity - the opacity to apply to the canvas
	Throws:
	MissingResourceException
	Since:
	2.0

	

Method Detail

	
setPDF

public void setPDF(PDF pdf)

"Attach" this PDFCanvas to the specified PDF. Although this doesn't
 do anything specific to the output, it allows some optimisations to be
 made regarding shared resources, by associating a PDF canvas with the
 PDF that will eventually reference it.

	Since:
	2.26.5

	
getDefaultColorSpace

public ColorSpace getDefaultColorSpace(int components)

Description copied from interface: PDFDrawable

 Return the ColorSpace used by this Drawable to anchor device-dependent
 colors to a profile. For example, the ColorSpace returned by
 getDefaultColorSpace(3) is used by all "Device RGB" colors
 on the page, effectively turning them into calibrated colors.

 The PDF API automatically sets a calibrated sRGB ColorSpace as the
 ColorSpace for all DeviceRGB content on the page. Unlike the use of
 "Output Intents" on the OutputProfile class, multiple ColorSpaces
 can be set, one each for Gray, RGB, and CMYK. This is a cheap way to
 convert pages containing both DeviceRGB and DeviceCMYK to using calibrated
 colors.

	Specified by:
	getDefaultColorSpace in interface PDFDrawable
	Parameters:
	components - identifies the Default ColorSpace we're requesting - valid
 values are 1 for Gray, 3 for RGB or 4 for CMYK.
	Returns:
	the Default ColorSpace requested, or null if none is set.

	
setDefaultColorSpace

public void setDefaultColorSpace(int components,
 ColorSpace cs)

Description copied from interface: PDFDrawable

Set the ColorSpace to use to anchor device-dependent colors on this
 Drawable, as described by PDFDrawable.getDefaultColorSpace(int).

	Specified by:
	setDefaultColorSpace in interface PDFDrawable
	Parameters:
	components - identifies the Default ColorSpace to set - valid values are
 1 for Gray, 3 for RGB or 4 for CMYK.
	cs - the ColorSpace to set, which must be either null (to delete the existing value) or a ColorSpace of a type that matches the "components" parameter.

	
flush

public void flush()

 This method flushes any operations that have been written to the canvas, and closes
 the stream for further writes. Canvases must be flushed before they can be cloned
 (by calling the PDFCanvas(PDFCanvas) constructor).

 After a canvas is flushed, it can still be written to, but this will cause the
 canvas to be uncompressed and recompressed, which isn't a very efficient operation in
 terms of time or memory and is therefore best avoided.

 It is a good idea to flush a PDFCanvas after you've finished modifying it, as the
 library can manage them more efficiently if it knows you're not expecting to
 write to them again. In particular once they're flushed they may be written to disk
 (or similar) by a Cache

	Specified by:
	flush in interface PDFDrawable
	Throws:
	IllegalStateException - if the canvas is incomplete - you have an open path
 or a save() without a matching restore().
	Since:
	2.2

	
setMask

public void setMask(PDFCanvas mask,
 boolean alpha)

 Set the mask which will be applied when this canvas is drawn to a parent
 PDFCanvas or PDFPage. The supplied mask should be the same size as this
 PDFCanvas, or it may be null to remove the mask completely.
 The mask must be set to the desired value before the canvas is
 drawn to a parent page or canvas.

 If alpha is true the mask canvas will be interpreted as an "alpha" mask - the
 alpha channel will be used to determine how much of this canvas to apply,
 with transparent areas transparent, and opaque areas opaque.

 If alpha is false, the mask canvas will be interprected as a "luminance" mask.
 The grayscale value of each point will be used to determine opacity - white
 being fully opaque, black being fully transparent. The supplied canvas is
 assumed to be drawn over a black background, so transparency is not a factor
 in this calculation.

	Parameters:
	mask - the mask canvas, or null to use no mask
	alpha - is mask is not null, a value of true to use it as an alpha-mask, or false for a luminance mask
	Since:
	2.23.3

	
setBox

public void setBox(float x1,
 float y1,
 float x2,
 float y2)

Set the canvas box. This can be used to change the width or height
 of the canvas after creation if required.

	Since:
	2.23.3

	
getBox

public float[] getBox()

Return the canvas box, as set in the constructor or by setBox(float, float, float, float)

	Since:
	2.23.3

	
rawWrite

public void rawWrite(String data)

Write raw PDF commands to the canvas. This is for advanced users
 only, but does allow those intimately familiar with the PDF specification
 to perform some of the more esoteric actions that aren't directly
 supported by the PDF library. Using this method it is easy to create
 invalid PDF documents, so use with caution.

	Specified by:
	rawWrite in interface PDFDrawable
	Parameters:
	data - the PDF operations to write to the stream, for instance "/Perceptual ri" to set the RenderingIntent. Line breaks will be added before and after the specified string.
	Since:
	2.1.2

	
getWidth

public float getWidth()

Return the width of the canvas

	Since:
	2.0

	
getHeight

public float getHeight()

Return the width of the canvas

	Since:
	2.0

	
setStyle

public void setStyle(PDFStyle style)

Set the style for this Canvas

	Specified by:
	setStyle in interface PDFDrawable

	
drawLine

public void drawLine(float x1,
 float y1,
 float x2,
 float y2)

Draw a line from x1,y1 to x2,y2.

	Specified by:
	drawLine in interface PDFDrawable
	Parameters:
	x1 - the X co-ordinate of the start of the line
	y1 - the Y co-ordinate of the start of the line
	x2 - the X co-ordinate of the end of the line
	y2 - the Y co-ordinate of the end of the line
	Since:
	2.0

	
drawRectangle

public void drawRectangle(float x1,
 float y1,
 float x2,
 float y2)

 Draw a rectangle through the two corners x1,y1 and x2,y2.
 Whether the rectangle is drawn as an outline or filled depends on the
 LineColor and FillColor of the current style (see the
 pathPaint() method for more information).

	Specified by:
	drawRectangle in interface PDFDrawable
	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle
	Since:
	2.0

	
drawRoundedRectangle

public void drawRoundedRectangle(float x1,
 float y1,
 float x2,
 float y2,
 float r)

 Draw a rectangle with rounded corners through the two corners
 x1,y1 and x2,y2.
 Whether the rectangle is drawn as an outline or filled depends on the
 LineColor and FillColor of the current style (see the
 pathPaint() method for more information).

	Specified by:
	drawRoundedRectangle in interface PDFDrawable
	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle
	r - The radius of the circle that is used to round the corners. A value of zero give identical results to drawRectangle(float, float, float, float)
	Since:
	2.0

	
drawPolygon

public void drawPolygon(float[] x,
 float[] y)

 Draw a polygon. The X and Y co-ordinates of the vertices are
 in the supplied arrays. Whether the polygon is drawn as an
 outline or filled depends on the LineColor and
 FillColor of the current style (see the
 pathPaint() method for more information).

 If the fill color is specified the polygon will be closed
 automatically if it isn't already.

	Specified by:
	drawPolygon in interface PDFDrawable
	Parameters:
	x - the X co-ordinates of the vertices
	y - the Y co-ordinates of the vertices
	Since:
	2.0

	
drawCircle

public void drawCircle(float x,
 float y,
 float radius)

Draw a circle centered on x, y
 with a radius of radius. A more convenient way to
 draw circles than drawEllipse

	Specified by:
	drawCircle in interface PDFDrawable
	Parameters:
	x - the X co-ordinate of the center of the circle
	y - the Y co-ordinate of the center of the circle
	radius - the radius of the circle
	Since:
	2.0

	
drawEllipse

public void drawEllipse(float x1,
 float y1,
 float x2,
 float y2)

 Draw an ellipse inside the specified rectangle. The top and sides
 of the ellipse will touch the edges of the rectangle drawn between
 x1,y1 and x2,y2.

 Whether the ellipse is drawn as an outline or filled depends on the
 LineColor and FillColor of the current style
 (see the pathPaint() method for more information).

	Specified by:
	drawEllipse in interface PDFDrawable
	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle
	Since:
	2.0

	
drawEllipseArc

public void drawEllipseArc(float x1,
 float y1,
 float x2,
 float y2,
 float start,
 float end)

 Draw an ellipse arc inside the specified rectangle. The same as
 drawEllipse, but allows you to specify a start and end angle.
 If a FillColor is specified, the arc will be closed with a straight line.

	Specified by:
	drawEllipseArc in interface PDFDrawable
	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle
	start - the start angle of the arc, in degrees clockwise from 12 o'clock
	end - the end angle of the arc, in degrees clockwise from 12 o'clock
	Since:
	2.0

	
drawCircleArc

public void drawCircleArc(float x,
 float y,
 float radius,
 float start,
 float end)

Draw an arc of the circle centered on x,y with the specified radius.
 A more convenient way to draw circular arcs than drawEllipseArc
 If a FillColor is specified, the arc will be closed with a straight line.

	Specified by:
	drawCircleArc in interface PDFDrawable
	Parameters:
	x - the X co-ordinate of the center of the circle
	y - the Y co-ordinate of the center of the circle
	radius - the radius of the circle
	start - the start angle of the arc, in degrees clockwise from 12 o'clock
	end - the end angle of the arc, in degrees clockwise from 12 o'clock
	Since:
	2.0

	
drawShape

public void drawShape(Shape shape)

Draw a Shape.
 If the fill color is specified the Shape will be closed
 automatically if it isn't already.

	Specified by:
	drawShape in interface PDFDrawable
	Since:
	2.11.7

	
drawGlyphVector

public void drawGlyphVector(PDFGlyphVector gv,
 float x,
 float y)

Draw a PDFGlyphVector onto the canvas. See that class for
 an example of how to use this method.

	Specified by:
	drawGlyphVector in interface PDFDrawable
	Parameters:
	gv - the PDFGlyphVector to draw
	x - the X co-ordinate to position the left edge of the PDFGlyphVector
	y - the Y co-ordinate to position the baseline of the PDFGlyphVector
	Since:
	2.11.22
	See Also:
	PDFGlyphVector,
PDFStyle.createGlyphVector(java.lang.String, java.util.Locale)

	
clipRectangle

public void clipRectangle(float x1,
 float y1,
 float x2,
 float y2)

 Set the clipping area to the rectangle which runs through
 the two corners x1,y1 and x2,y2.

	Specified by:
	clipRectangle in interface PDFDrawable
	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle
	Since:
	2.0

	
clipRoundedRectangle

public void clipRoundedRectangle(float x1,
 float y1,
 float x2,
 float y2,
 float r)

 Set the clipping area to a rectangle with rounded corners which runs through
 the two corners x1,y1 and x2,y2.

	Specified by:
	clipRoundedRectangle in interface PDFDrawable
	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle
	r - The radius of the circle that is used to round the corners. A value of zero give identical results to drawRectangle(float, float, float, float)
	Since:
	2.0

	
clipPolygon

public void clipPolygon(float[] x,
 float[] y)

 Set the clipping area to a polygon. The X and Y co-ordinates
 of the vertices are in the supplied arrays.

	Specified by:
	clipPolygon in interface PDFDrawable
	Parameters:
	x - the X co-ordinates of the vertices
	y - the Y co-ordinates of the vertices
	Since:
	2.0

	
clipEllipse

public void clipEllipse(float x1,
 float y1,
 float x2,
 float y2)

 Set the clipping area to the ellipse inside the specified rectangle.
 The top and sides of the ellipse will touch the edges of the rectangle
 drawn between x1,y1 and x2,y2.

	Specified by:
	clipEllipse in interface PDFDrawable
	Parameters:
	x1 - the X co-ordinate of the first corner of the rectangle
	y1 - the Y co-ordinate of the first corner of the rectangle
	x2 - the X co-ordinate of the second corner of the rectangle
	y2 - the Y co-ordinate of the second corner of the rectangle
	Since:
	2.0

	
clipCircle

public void clipCircle(float x,
 float y,
 float radius)

Set the clipping area to a circle centered on x, y
 with a radius of radius.

	Specified by:
	clipCircle in interface PDFDrawable
	Parameters:
	x - the X co-ordinate of the center of the circle
	y - the Y co-ordinate of the center of the circle
	radius - the radius of the circle
	Since:
	2.0

	
clipShape

public void clipShape(Shape shape)

Clip a Shape

	Specified by:
	clipShape in interface PDFDrawable
	Since:
	2.11.7

	
pathMove

public void pathMove(float x,
 float y)

Start a new path at the specified position. If a path has
 already been started, move the cursor without drawing a line.

	Specified by:
	pathMove in interface PDFDrawable
	Parameters:
	x - the X co-ordinate to move to
	y - the Y co-ordinate to move to
	Since:
	2.0

	
pathLine

public boolean pathLine(float x,
 float y)

Continue the open path in a straight line to the specified position.

	Specified by:
	pathLine in interface PDFDrawable
	Parameters:
	x - the X co-ordinate to move to
	y - the Y co-ordinate to move to
	Returns:
	true if any sections were drawn on the path
	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)
	Since:
	2.0

	
pathBezier

public boolean pathBezier(float cx1,
 float cy1,
 float cx2,
 float cy2,
 float x,
 float y)

Continue the open path in a bezier curve to the specified position.

	Specified by:
	pathBezier in interface PDFDrawable
	Parameters:
	cx1 - the X co-ordinate of the first control point for the curve
	cy1 - the Y co-ordinate of the first control point for the curve
	cx2 - the X co-ordinate of the second control point for the curve
	cy2 - the Y co-ordinate of the second control point for the curve
	x - the X co-ordinate to move to
	y - the Y co-ordinate to move to
	Returns:
	true if any sections were drawn on the path
	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)
	Since:
	2.0

	
pathArc

public boolean pathArc(float width,
 float height,
 float start,
 float end)

Continue the open path in an arc to the specified position.

	Specified by:
	pathArc in interface PDFDrawable
	Parameters:
	width - the width of the ellipse to take the arc from
	height - the height of the ellipse to take the arc from
	start - the start angle of the arc, in degrees clockwise from 12 o'clock
	end - the end angle of the arc, in degrees clockwise from 12 o'clock
	Returns:
	true if any sections were drawn on the path
	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)
	Since:
	2.0

	
pathShape

public boolean pathShape(Shape shape)

Add the path specified by a Shape to the Canvas

	Specified by:
	pathShape in interface PDFDrawable
	Parameters:
	shape - the shape
	Returns:
	true if any sections were drawn on the path
	Since:
	2.11.7

	
pathClose

public void pathClose()

Close the path by drawing a straight line back to its beginning.
 This does not complete the path, you still need to complete it with
 pathPaint() or pathCancel()

	Specified by:
	pathClose in interface PDFDrawable
	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)
	Since:
	2.0

	
pathCancel

public void pathCancel()

Cancel the current path

	Specified by:
	pathCancel in interface PDFDrawable
	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)
	Since:
	2.0

	
pathPaint

public void pathPaint()

Close and paint the path. What this actually does depends on the currently
 applied PDFStyle
 	If the style has a LineColor specified but no FillColor, "stroke"
 the path by drawing it as an outline in the current line color
	If the style has a FillColor specified but no LineColor, call
 pathClose() and "fill" the path with the current fill color
	If the style has both a FillColor and a LineColor, call pathClose(), "fill" the path with the current fill color then "stroke"
 the path with the current line color.

	Specified by:
	pathPaint in interface PDFDrawable
	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float),
 or if neither a fill nor line color has been specified.
	Since:
	2.0

	
pathClipAndPaint

public void pathClipAndPaint()

Close and paint the path as described in pathPaint(), then set the
 clipping area to the same are as described in pathClip()

	Specified by:
	pathClipAndPaint in interface PDFDrawable
	Since:
	2.0

	
pathClip

public void pathClip()

 Close the path and set the "clipping area" of the page to be the intersection of
 the current clipping area and the shape defined by this path.
 Any future graphics or text operations on the page are only
 applied within this area.

 There is no way to enlarge the current clipping area, or to set
 a new clipping area without reference to the current one. However,
 as the current clipping area is part of the graphics state, it
 can and should be nested inside calls to save() and
 restore() to limit its effect.

	Specified by:
	pathClip in interface PDFDrawable
	Throws:
	IllegalStateException - if a path hasn't been started with pathMove(float, float)
	Since:
	2.0

	
save

public void save()

 Save the state of this page. This takes a snapshot of the currently applied
 style, position, clipping area and any rotation/translation/scaling that has
 been applied, which can be later restored with a call to restore()

 Calls to save can be nested, but note that for most PDF viewers
 it is an error to save the page state but not restore it.

	Specified by:
	save in interface PDFDrawable
	Throws:
	IllegalStateException - if a save is performed with an open path or if
 saves are nested more than 28 deep.
	Since:
	2.0

	
restore

public void restore()

Restore the state that was saved with the last call to save()

	Specified by:
	restore in interface PDFDrawable
	Throws:
	IllegalStateException - if there is no previously saved state
	Since:
	2.0

	
rotate

public void rotate(float x,
 float y,
 double ang)

Rotate the canvas around the specified point by the specified
 number of degrees. All further draw/path/clip actions on this
 canvas will be adjusted accordingly. The best way to get back
 to normal after a rotate is to wrap the rotate inside a save()/restore()
 block, eg.

 canvas.save();
 canvas.rotate(100,100,45);
 canvas.drawLayoutBox(rotatedtext, 100, 100);
 canvas.restore();

	Specified by:
	rotate in interface PDFDrawable
	Since:
	2.0

	
transform

public void transform(AffineTransform transform)

Concatenate an AffineTransform to the canvases current
 transform. All future operations will be transformed by
 this matrix.

	Specified by:
	transform in interface PDFDrawable
	Since:
	2.11.7

	
transform

public void transform(double m00,
 double m10,
 double m01,
 double m11,
 double m02,
 double m12)

Concatenate an AffineTransform to the canvases current
 transform. All future operations will be transformed by
 this matrix.
 The six arguments are the same 6 arguments
 passed in to the AffineTransform constructor, in the same same
 order.

	Specified by:
	transform in interface PDFDrawable
	Since:
	2.7.7

	
getTransform

public AffineTransform getTransform()

Return a copy of the transform currently applied to the PDFCanvas

	Since:
	2.23.3

	
drawImage

public void drawImage(PDFImage image,
 float x1,
 float y1,
 float x2,
 float y2)

Draw a PDFImage at the specified position on the page

	Specified by:
	drawImage in interface PDFDrawable
	Parameters:
	image - the image to draw
	x1 - the X co-ordinate of the left hand side of the image
	y1 - the Y co-ordinate of the bottom side of the image
	x2 - the X co-ordinate of the right hand side of the image
	y2 - the Y co-ordinate of the top side of the image
	Since:
	2.0

	
drawCanvas

public void drawCanvas(PDFCanvas canvas,
 float x1,
 float y1,
 float x2,
 float y2)

Draw a PDFCanvas at the specified position on the page.

	Specified by:
	drawCanvas in interface PDFDrawable
	Parameters:
	canvas - the canvas to draw
	x1 - the X co-ordinate of the left hand side of the image
	y1 - the Y co-ordinate of the bottom side of the image
	x2 - the X co-ordinate of the right hand side of the image
	y2 - the Y co-ordinate of the top side of the image
	Throws:
	IllegalArgumentException - if the canvas being drawn is this canvas - recursion is not allowed.
	Since:
	2.0

	
beginTag

public void beginTag(String tag,
 Map<String,Object> atts)

 Open a structural tag on this page. This call must be matched by a later call to endTag().

 Structural tags add a tree structure on top of the otherwise flat
 structure of a PDF. They are primarily used to meet accesibility
 requirements, and so may be required for certain subsets of PDF
 such as PDF/A-1a. Using the beginTag and endtag
 methods is fairly simple and should be familiar to anytone that has used SAX or HTML:

 PDFCanvas canvas = new PDFCanvas(width, height);
 canvas.beginTag("Sect", null);
 LayoutBox box = new LayoutBox(600);
 box.addText("He said '", style, null);
 Map<String,Object> atts = new HashMap<String,Object>();
 atts.put("id", "quote1");
 box.beginTag("Quote", atts);
 box.addText("This is a contrived example", boldstyle, null);
 box.endTag();
 canvas.drawLayoutBox(box, x, y);
 canvas.endTag();

 Calls to beginTag must be matched to calls to endTag for each object - the methods exist in
 PDFPage, PDFCanvas and LayoutBox. A PDFCanvas with structural tags
 can only be drawn onto a page or another canvas once - an IllegalStateException
 will be thrown on a second attempt, or if it's drawn with an unclosed structural tag.

 While in general any values for tag are allowed, the following are suggested by the PDF specification

 	Document	Document - the root element of any logical structure Document; recommended in PDF1, required in PDF2.
	Part	Part - A large-scale division of a document. This type of element is appropriate for grouping articles or sections.
	Art	Article - A relatively self-contained body of text constituting a single narrative or exposition. Articles should be disjoint; that is, they should not contain other articles as constituent elements (removed in PDF2).
	Sect	Section - A container for grouping related content elements. For example, a section might contain a heading, several introductory paragraphs, and two or more other sections nested within it as subsections.
	Div	Division A generic block-level element or group of elements.
	BlockQuote	Block quotation - A portion of text consisting of one or more paragraphs attributed to someone other than the author of the surrounding text. (removed in PDF2)
	Caption	Caption - A brief portion of text describing a table or figure.
	TOC	Table Of Contents - A list made up of table of contents item entries (structure type TOCI) and/or other nested table of contents entries (TOC).

A TOC entry that includes only TOCI entries represents a flat hierarchy. A TOC entry that includes other nested TOC entries (and possibly TOCI entries) represents a more complex hierarchy. Ideally, the hierarchy of a top level TOC entry reflects the structure of the main body of the document.

Lists of figures and tables, as well as bibliographies, can be treated as tables of contents for purposes of the standard structure types. (removed in PDF2)
	TOCI	Table of Contents Item - This entry’s children may be any of the following structure types: Lbl, Reference, NonStruct, P or TOC (removed in PDF2)
	Index	A sequence of entries containing identifying text accompanied by Reference elements that point out occurrences of the specified text in the main body of a document. (removed in PDF2)
	NonStruct	Nonstructural element - A grouping element having no inherent structural significance; it serves solely for grouping purposes. This type of element differs from a Div in that it shall not be interpreted or exported to other document formats; however, its descendants shall be processed normally. (removed in PDF2)
	Private	Private Element - A grouping element containing private content belonging to the application producing it. The structural significance of this type of element is unspecified and shall be determined entirely by the conforming writer. Neither the Private element nor any of its descendants shall be interpreted or exported to other document formats. (removed in PDF2)
	H	Heading - A label for a subdivision of a document’s content. It should be the first child of the Div that it heads.
	H1, H2, H3, H4, H5, H6	Heading with specific levels - For use in conforming writers that cannot hierarchically nest their sections and thus cannot determine the level of a heading from its level of nesting.
	P	Paragraph - A low-level division of text.
	L	List - A sequence of items of like meaning and importance. Its immediate children should be an optional Caption followed by one or more LI
	LI	List Item - An individual member of a list. Its children may be one or more combinations of Lbl or LBody
	Lbl	Label - A name or number that distinguishes a given item from others in the same list or other group of like items. In a dictionary list, for example, it contains the term being defined; in a bulleted or numbered list, it contains the bullet character or the number of the list item and associated punctuation.
	LBody	List Body - The descriptive content of a list item. In a dictionary list, for example, it contains the definition of the term. It may either contain the content directly or have other block-level items, perhaps including nested lists, as children.
	Table	Table - A two-dimensional layout of rectangular data cells, possibly having a complex substructure. It contains either one or more TR as children; or an optional THead followed by one or more TBody and an optional TFoot. In addition, a table may have a Caption as its first or last child.
	TR	Table Row - A row of headings or data in a table. It may contain TH and TD
	TH	Table Header Cell - A table cell containing header text describing one or more rows or columns of the table.
	TD	Table Data Cell - A table cell containing data that is part of the table’s content.
	THead	Table header row group - A group of rows that constitute the header of a table. If the table is split across multiple pages, these rows may be redrawn at the top of each table fragment (although there is only one THead element).
	TBody	Table body row group - A group of rows that constitute the main body portion of a table. If the table is split across multiple pages, the body area may be broken apart on a row boundary. A table may have multiple TBody elements to allow for the drawing of a border or background for a set of rows.
	TFoot	Table footer row group - A group of rows that constitute the footer of a table. If the table is split across multiple pages, these rows may be redrawn at the bottom of each table fragment (although there is only one TFoot element.)
	Span	Span - A generic inline portion of text having no particular inherent characteristics. It can be used, for example, to delimit a range of text with a given set of styling attributes, although it's not necessary to identify italic or bold text with a Span (as in HTML), as this can be derived from the text.
	Quote	Quotation - An inline portion of text attributed to someone other than the author of the surrounding text. The quoted text should be contained inline within a single paragraph. This differs from the block-level element BlockQuote, which consists of one or more complete paragraphs (or other elements presented as if they were complete paragraphs). (removed in PDF2)
	Note	Note - An item of explanatory text, such as a footnote or an endnote, that is referred to from within the body of the document. It may have a Lbl as a child. The note may be included as a child of the structure element in the body text that refers to it, or it may be included elsewhere (such as in an endnotes section) and accessed by means of a Reference. (removed in PDF2)
	Reference	Reference - A citation to content elsewhere in the document. (removed in PDF2)
	BibEntry	Bibliographic entry - A reference identifying the external source of some cited content. It may contain a Lbl as a child.

Although a bibliography entry is likely to include component parts identifying the cited content’s author, work, publisher, and so forth, no standard structure types are defined at this level of detail.
	Code	Code entry - A fragment of computer program text (removed in PDF2)
	Link	Link - An association between a portion of the inline items’s content and a corresponding AnnotationLink. Its children should be zero or more content items or child inline items, and its annotation attribute should be set to the AnnotationLink
	Annot	Annotation - An association between a portion of the inline items’s content and a corresponding PDFAnnotation. Its children should be zero or more content items or child inline items, and its annotation attribute should be set to the PDFAnnotation
	Form	Annotation - An association between a portion of the inline items’s content and a corresponding WidgetAnnotation. Its children should be zero or more content items or child inline items, and its annotation attribute should be set to the WidgetAnnotation
	Artifact	Artifact - Used to mark a section of text as a rendering artifact only. Artifacts are not considered part of the logical document structure. They take no attributes.

 Attributes for structural tags are unfortunately somewhat overengineered in the specification. For now we
 will recognise and handle appropriately the following attributes.

 	id	The ID for this node - should be unique across the PDF (sets the "ID" attribute)
	class	One or more class names for this node, separated by spaces (sets the "C" attribute)
	title	The optional human-readable description for the tag, eg "Chapter 1" (sets the "T" attribute)
	lang	The optional language code for the tag and its childen, can be a String or a Locale. An alternative to setting a Locale on the text, it is recommended not to mix the two approaches - if you're using beginTag/endTag, leave the locale in any calls to LayoutBox.addText() as null (sets the "Lang" attribute)
	alt	The alternate description for the structure element and its childen in human readable form (sets the "Alt" attribute).
	ActualText	Text that is an exact replacement for the structure element and its children. This can be used when the actual PDF text is being added in a font without a correct Unicode mapping, when text is being added as an image, or when text is known to be broken over several lines (for example) (sets the "ActualText" attribute). Note there is rarely any reason to set this manually, it will be done automatically by the API when required. The only time it is useful to set it manually is to prevent text from being read out by a screen reader, which can be done by setting it to a single space character.
	abbr	When an abbreviation is used, this attribute can be set to the unabbreviated version (sets the "E" attribute)
	phoneme	Along with the phonetic-alphabet attribute, specifies the pronunciation hints for the element (a PDF 2.0 property) Since 2.24.4
	phonetic-alphabet	Sets the interpretation of the phoneme value. The default is "ipa", but other values include "x-sampa", "x-Latn-pinyin" or "x-Latn-wadegile" (a PDF 2.0 property). Since 2.24.4
	annotation	For Link, Annot or Form tags, the PDFAnnotation they refer to
	metadata	Since 2.26, any element may have XMP metadata associated with it by setting this attribute to the metadata, stored as a XMP or String. It may be retrieved as an XMP later by calling Node.getUserData("metadata")
	ref	Since 2.26.5 the "ref" attribute can be set to a space-separated list of element IDs (which may take the form bfo:uuid:nnn to reference a node with a bfo:uuid. The attribute will be converted to the PDF 2.0 Ref attribute
	files	Since 2.26, any element may have a list of files associated with it by setting this attribute to an EmbeddedFile (or a collection of them). It may be retrieved later by calling Node.getUserData("files")
	bfo:uuid	Optional, representing the document-wide unique ID of this node. Sibling nodes with the same bfo:uuid will be merged in the tree (since 2.24) Note that bfo:key is a legacy method of setting this value. This value can be retrieved from any element by calling node.getUserData("uuid") and the values can also be passed in to Document.getElementById()
	bfo:sort	Optional. If set to an instanceof Comparable or a Reference to a Comparable, all siblings will be sorted based on this value. When creating tags from an XML source, it would typically be set to an Integer representing the position of the node in document order (since 2.24)
	bfo:location	Optional. If set to a String, any errors relating to this node will be tagged with this location (since 2.24)

 Any attribute not described here will be stored in the document structure.
 Attributes may optionally be prefixed by an "owner" - the PDF Structure Tree version of an XML Namespace,
 as described in section 14.8.5.2 of ISO/IEC 32000 (version 1).
 For instance, to set the "Scope" attribute with the "Table" owner, you can specify the attribute
 name as "Table:Scope". Unprefixed attributes will be stored with the "UserProperties" Owner.

 For example, to specify a "TH" tag with the recommended "Scope" attribute, you could do as follows:

 Map<String,Object> atts = new HashMap<String,Object>();
 atts.put("Table:Scope", "Both");

 New in 2.24 (and new in PDF 2.0) is full support for namespaces. To specify a namespace, separate the
 namespace URI from the qname with a newline. The prefix is not stored in the PDF structure, so is
 optional. This approach applies to both the element name and the attribute - for example:

 Map<String,Object> atts = new HashMap<String,Object>();
 atts.put("http://www.w3.org/1999/xhtml\nfor", "myvalue");
 canvas.beginTag("http://www.w3.org/1999/xhtml\nlabel", atts);

 Attribute values are specified as Strings, but are not stored that way in PDF - the storage depends
 on the attribute, and the details of that are in the PDF specification. The types can also be
 retrieved from the DOM by querying the "type" userdata on an attribute,
 eg String type = (String)pdf.getDocumentElement().createAttribute("Layout:BorderColor").getUserData("type");

The rules for serialization are

 	Type	How to format the value
	name	the value is a string, eg Name or Two Words
	string	the value as a string, eg None
	number	the value as a number, eg 2.4 or 1
	boolean	the value as true or false
	color	the value is an array of three RGB values from 0..1, eg [0 1 0]
	rect	the value is an array of four numbers, eg [0 0 50 100]

 Arrays of each of these types are also accepted - these are specified wrapped in square brackets,
 with the individual values space separated, as shown in the example for "rect" and "color" above.
 There are three additional complexities with arrays:

 	Strings or names in an array use "backslash escaping"; for example, an array containing the
 two strings "back\slash" and "two words" would be represented as [back\\slash two\ words]
	Arrays of colors look like [[1 0 0] [1 0 0] [0 0 0] [0 0 0]]
	Arrays of colors or numbers also allow null values - this is specified as null, eg [[1 0 0] [1 0 0] [0 0 0] null]
 or [8 8 null 8]

 Note that as of 2.24, it's possible to modify the Document after creation. Because of this, very little
 validation is done directly by this method call. It is strongly recommended to use the "bfo:location"
 attribute to set some sort of useful marker in the attributes, so that any later error reports can be
 matched to the input element. A useful approach when creating content that originally started as XML,
 is to set both "bfo:uuid" and "bfo:sort" to an Integer that is the index in document order of
 the original element, and "bfo:location" to the String value of the Locator.
 This will allow elements to be added in an order that doesn't necessarily reflect the original ordering
 of the XML, while ensuring they are reordered to match that order when the PDF is rendered.

 If the sort order of individual content items also needs to be adjusted, passing
 null as a special value for tag in this method will set the properties for the
 subsequent items of content (text, graphics etc). There is no need to do this unless you are sorting
 content, in which case the attributes should include the bfo:sort key. There is no need to
 call a corresponding endTag() in this case.

 Finally note that 2.24 removed some legacy aliases for attributes, as having two means to set the
 same attribute is ambiguous. To migrate, change C to class, T to title, text to ActualText, E to abbr,
 ID to id, and ensure any attributes have theie Owner specified as a prefix if required - for example,
 prior to 2.24 you could specify "Scope" to set "Table:Scope" - this is no longer the case.

	Specified by:
	beginTag in interface PDFDrawable
	Parameters:
	tag - name of the tag
	atts - user defined attributes for this tag, or null
	Since:
	2.11.9
	See Also:
	PDF.getStructureTree(),
PDFPage.beginTag(java.lang.String, java.util.Map<java.lang.String, java.lang.Object>),
LayoutBox.beginTag(java.lang.String, java.util.Map<java.lang.String, java.lang.Object>),
endTag(),
PDFPage.endTag(),
LayoutBox.endTag()

	
endTag

public void endTag()

Close a structural tag on this page. This call must match
 an earlier call to beginTag()

	Specified by:
	endTag in interface PDFDrawable
	Since:
	2.11.9
	See Also:
	beginTag(java.lang.String, java.util.Map<java.lang.String, java.lang.Object>)

	
drawLayoutBox

public void drawLayoutBox(LayoutBox box,
 float x,
 float y)

Draw a LayoutBox at the specified position on the page

	Specified by:
	drawLayoutBox in interface PDFDrawable
	Parameters:
	box - the LayoutBox to draw
	x - the X co-ordinate of the left hand side of the box
	y - the Y co-ordinate of the top side of the box
	Since:
	2.0

	
setWatermarkOrBackground

public void setWatermarkOrBackground(boolean screen,
 boolean print)

Deprecated.
this method hasn't worked for some time. Use the setOptionalContentDescriptor(org.faceless.pdf2.OptionalContentDescriptor) method instead.

 Mark the canvas as being part of the Background or Watermark Layer.

	Since:
	2.2.2

	
setOptionalContentDescriptor

public void setOptionalContentDescriptor(OptionalContentDescriptor descriptor)

Set the OptionalContentDescriptor on this canvas, which can be a OptionalContentLayer
 or a logical expression containing several layers. See the API docs for those classes
 for more detail and examples.

	Parameters:
	descriptor - the descriptor, or null to remove any existing descriptor.
	Since:
	2.23.5
	See Also:
	OptionalContentDescriptor,
OptionalContentLayer

	
getOptionalContentDescriptor

public OptionalContentDescriptor getOptionalContentDescriptor()

Return the OptionalContentDescriptor previously set by setOptionalContentDescriptor(org.faceless.pdf2.OptionalContentDescriptor)

	Since:
	2.23.5

	
setMetaData

public void setMetaData(String xmldata)

Set the XML metadata associated with this object.
 Since 2.26 this method
 calls getXMP().read(new StringReader(xmldata == null ? "" : xmldata)).
 We strongly recommend using the getXMP() method and modifying the XMP directly
 rather than using this method.

	Specified by:
	setMetaData in interface PDFDrawable
	Parameters:
	xmldata - the XML data to embed into the document, or null to clear any existing metadata. No validation is performed on this input.
	Since:
	2.11.18
	See Also:
	getXMP()

	
getXMP

public XMP getXMP()

Return an XMP Metadata object representing any XML metadata associated with this object

	Returns:
	the XMP, which may be empty or invalid but will never be null
	Since:
	2.26

	
createGraphics

public Graphics2D createGraphics(PDF pdf)

 Return a Graphics2D implementation that renders to this PDFCanvas.
 This provides a standard Java AWT way to create content on the page, although
 there are some things to note due to the different rendering models between the
 PDF and the AWT.

 	Graphics2D.setComposite(java.awt.Composite) will log an AW1 warning and ignore anything other than an AlphaComposite.SRC_OVER composite
	Graphics2D.setPaint(java.awt.Paint) will log an AW1 warning and ignore any types of Paint other than those defined in Java SE.
 The reason is the PaintContext interface is raster-based, so can't be used with PDF.
	Graphics.setXORMode(java.awt.Color) will log an AW1 warning and do nothing
	Graphics.copyArea(int, int, int, int, int, int) will log an AW1 warning and do nothing
	Any Fonts can be used, but they will be recreated as OpenType fonts internally. All languages supported
 by the AWT should work correctly, including RTL languages (Arabic, Hebrew) and complex-shaping languages
 (Hindi, etc). However by using the Graphics2D you are relying on the Java AWT classes to layout text, rather
 than using the PDF Libraries own text-layout routines. Initial testing shows both are essentially identical,
 but that can't be guaranteed.
	Although this method can be called multiple times on the same PDFCanvas, the Graphics2D objects returned
 from each call are not entirely independent (unlike, for example, those returned from
 BufferedImage.createGraphics(). The recommended approach if multiple
 Graphics2D objects is to call this method once, then call Graphics.create() to duplicate it.

	Remember to call Graphics.dispose() on this Graphics2D when done, otherwise the PDF will fail to render
	Do NOT write to this PDFCanvas directly while also writing to one of its Graphics2D objects!

 Otherwise the Graphics2D returned here is complete, although
 the PDF rendering model is much more powerful than the AWT model - operations like
 compositing a PDFCanvas onto another PDFCanvas can't be represented in the AWT, which
 can draw only shapes, text and bitmap images.

 Resources such as AWT images and fonts need to be converted to their PDF equivalents. The pdf parameter
 must be specified to ensure these are done only once per document.

 Finally, note that passing this Graphics2D as an input to the PagePainter.drawSubImage(java.awt.Graphics2D, double, double, double, double, float) method - round-tripping
 a PDF by rendering to a Graphics2D which converts it back to a PDF - will not give perfect results. Forcing the PDF rendering
 model onto the AWT model to generate a bitmap is hard enough - reversing the process is not possible.

	Parameters:
	pdf - the PDF that will eventually "own" this PDFCanvas.
	Since:
	2.26.3

	
toString

public String toString()

	
putLiteral

public void putLiteral(String key,
 String tokens)

Put a literal token sequnce. For debugging

	Parameters:
	key - the key
	tokens - the token sequence, eg "true" or "/foo" or "[/Foo/Bar]". No refs, just direct objects.

	
clone

protected Object clone()

	Overrides:
	clone in class Object

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.3

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2023 Big Faceless Organization

