

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class PDF

	java.lang.Object
	
	org.faceless.pdf2.PDF

	
	All Implemented Interfaces:
	Cloneable

public class PDF
extends Object

A PDF describes a single document in Adobe's Portable
 Document Format. It is the highest-level object in the package.

 The life-cycle of a PDF generally consists of being created, adding
 new pages, optionally adding information about the document structure
 (e.g. bookmarks), and finally rendering to an OutputStream.

 This class only deals with the structure of the document. To actually
 create some content see the PDFPage class.

 Here's the ubiquitous example:

 import org.faceless.pdf2.*;

 // Create a new PDF
 PDF p = new PDF();

 // Create a new page
 PDFPage page = p.newPage(PDF.PAGESIZE_A4);

 // Create a new "style" to write in - Black 24pt Times Roman.
 PDFStyle mystyle = new PDFStyle();
 mystyle.setFont(new StandardFont(StandardFont.TIMES), 24);
 mystyle.setFillColor(java.awt.Color.black);

 // Put something on the page
 page.setStyle(mystyle);
 page.drawText("Hello, PDF-viewing World!", 100, 100);

 // Automatically go to this page when the document is opened.
 p.setAction(Event.OPEN, PDFAction.goTo(page));

 // Add some document info
 p.setInfo("Author", "Joe Bloggs");
 p.setInfo("Title", "My Document");

 // Add a bookmark
 java.util.List bookmarks = p.getBookmarks();
 bookmarks.add(new PDFBookmark("Hello World page", PDFAction.goTo(page)));

 // Write the document to a file
 OutputStream out = new FileOutputStream("test.pdf");
 p.render(out);
 out.close();

	Since:
	1.0
	See Also:
	PDFPage,
PDFReader

	

	

Field Summary

Fields 	Modifier and Type	Field	Description
	static String	PAGESIZE_A4	
A parameter to newPage(String) to create a new A4 page - 210x297mm

	static String	PAGESIZE_A4_LANDSCAPE	
A parameter to newPage(String) to create a new landscape A4 page - 297x210mm

	static String	PAGESIZE_A5	
A parameter to newPage(String) to create a new A5 page - 148x210mm

	static String	PAGESIZE_A5_LANDSCAPE	
A parameter to newPage(String) to create a new landscape A5 page - 210x148mm

	static String	PAGESIZE_LETTER	
A parameter to newPage(String) to create a new US Letter page - 8.5x11in

	static String	PAGESIZE_LETTER_LANDSCAPE	
A parameter to newPage(String) to create a new landscape US Letter page - 11x8.5in

	static String	VERSION	
This variable contains the version number of the current build.

	

Constructor Summary

Constructors 	Constructor	Description
	PDF()	
Create a new, empty PDF document

	PDF(OutputProfile targetprofile)	
Create a new PDF and immediately apply the specified OutputProfile.

	PDF(PDF pdf)	
Create a PDF that's a clone of the specified PDF.

	PDF(PDFReader reader)	
Create a PDF from the specified PDFReader.

	PDF(PDFReader reader,
 int revision)	
Create a PDF from the specified PDFReader, using the specified
 revision of the document.

	

Method Summary

All Methods Static Methods Instance Methods Concrete Methods Deprecated Methods 	Modifier and Type	Method	Description
	void	addPropertyChangeListener(PropertyChangeListener listener)	
Add a PropertyChangeListener to this object

	protected Object	clone()	
	void	close()	

 Close any file resources the PDF may be holding on to.

	PDFAction	getAction(Event event)	
Return the action that's performed when the specified event
 occurs on the document, as set by setAction.

	OutputProfile	getBasicOutputProfile()	
Return a basic OutputProfile for this PDF.

	List<PDFBookmark>	getBookmarks()	
Return the List of bookmarks at the top level of the document.

	String	getDocumentID(boolean primary)	

 Returns a String representing this documents unique ID.

	DocumentPart	getDocumentPart()	
Return the root DocumentPart, which will never be null but
 which will be empty unless this file uses
 DocumentParts

	Map<String,EmbeddedFile>	getEmbeddedFiles()	

 Return a Map containing all the Embedded Files associated with this
 document.

	EmbeddedFile	getEmbeddedFileSource()	
When a PDF is loaded from EmbeddedFile.getPDF(), this
 method will return the EmbeddedFile that contains this object.

	EncryptionHandler	getEncryptionHandler()	
Return the EncryptionHandler used to encrypt the document, or null
 if no encryption handler is in use.

	static ExecutorService	getExecutor()	
Returns the ExecutorService used by the PDF library to run
 tasks, as set by setExecutor(java.util.concurrent.ExecutorService).

	Form	getForm()	
Return the Interactive Form or "AcroForm" object which is part
 of each PDF document.

	OutputProfile	getFullOutputProfile()	
Deprecated.
since 2.18 the OutputProfiler class gives more control and should be used instead of PDF.getFullOutputProfile

	Map<String,Object>	getInfo()	

 Return the PDF meta information, as set by setInfo().

	String	getInfo(String key)	

 Return document meta data as set by setInfo() as a String.

	String	getJavaScript()	
Return the document-wide JavaScript, as set by setJavaScript(java.lang.String),
 or null if no JavaScript is defined for this document.

	PDFPage	getLastPage()	
Return the last page of this PDF.

	static Object	getLicensedProperty(String key)	
Retrieve a property from the PDF License.

	LoadState	getLoadState(int index)	
For linearized documents that are being loaded
 from a URL via the PDFReader.setSource(URL),
 this method relays the current load state of the specified page.

	Locale	getLocale()	
Return the PDF's Locale, as set by setLocale or (since 2.6.1) as
 loaded from the PDFs "Lang" tag.

	Reader	getMetaData()	

 Return any XML metadata associated with the document.

	Map<String,PDFAction>	getNamedActions()	

 Return a Map containing all the named actions in the PDF.

	int	getNumberOfPages()	
Return the number of pages in this PDF.

	int	getNumberOfRevisions()	

 Return the number of revisions made to the document.

	Object	getOption(String key)	
Returns the current value of an option, as set by setOption().

	List<OptionalContentLayer>	getOptionalContentLayers()	

 Return the list of OptionalContentLayer objects defined in the PDF.

	PDFPage	getPage(int pagenumber)	
Return the specified page.

	PDFPage	getPage(String name)	
Get a "Named Page" from the PDF.

	String	getPageLabel(int num)	
Get the "Page Label" for the specified page number, or null if none is
 specified.

	List<PDFPage>	getPages()	
Returns a List of the documents pages which may be manipulated to reorder, delete or
 append pages to the document.

	int	getPDFVersion()	
Get the version of the PDF.

	Portfolio	getPortfolio()	
Return the PDF portfolio, creating it if necessary.

	static PropertyManager	getPropertyManager()	
Get the PropertyManager currently being used by the PDF library

	float	getRenderProgress()	
Get the progress of the render() method running in a different
 thread.

	Document	getStructureTree()	

 Returns the Structure Tree for the entire document as a W3C DOM.

	Object	getUserData(String key)	
Return a property previously set on the PDF with the putUserData() method

	XMP	getXMP()	
Return the XMP metadata as an XMP object.

	void	importFDF(FDF fdf)	

 Import the contents of the specified FDF into the PDF document.

	static boolean	isLicensed()	
Return true if the PDF is licensed, false if it's running as a demo

	void	makePortfolio(boolean portfolio)	
Deprecated.
call #getPortfolio instead

	PDFPage	newPage(int w,
 int h)	
Create a new PDFPage object of the specified size and add it to
 this PDF.

	PDFPage	newPage(String pagesize)	

 Create a new page of the specified page size and add it to this PDF.

	PDFPage	newPage(PDFPage page)	
Create a new PDFPage object that is a clone of the specified page, and
 add it to this PDF.

	void	putLiteral(String key,
 String tokens)	
Put a literal token sequnce.

	void	putUserData(String key,
 Object value)	
Set a custom property on the PDF.

	void	rebuildStructureTree()	
Rebuild the Structure Tree returned from getStructureTree().

	void	removePropertyChangeListener(PropertyChangeListener listener)	
Remove a PropertyChangeListener to this object

	void	render(OutputStream out)	

 This method renders the completed PDF to an OutputStream.

	void	setAction(Event event,
 PDFAction action)	
Specify an action to perform when the specified event occurs on the document.

	static void	setCache(Cache cache)	
Set the Cache to be used by the library.

	void	setEncryptionHandler(EncryptionHandler encrypt)	

 Set the EncryptionHandler to encrypt this document with.

	static void	setExecutor(ExecutorService e)	

 Set the ExecutorService to be used by the PDF library to run
 any parallel operations.

	void	setInfo(String key,
 Object val)	

 Set an item of PDF meta-information, such as author or title.

	void	setJavaScript(String javascript)	
Set the document-wide JavaScript.

	static void	setLicenseKey(String key)	

 Set the license key for the library.

	void	setLocale(Locale locale)	
Set the default locale for this document.

	void	setMetaData(String xmldata)	

 Set the XMP Metadata associated with this document.

	void	setOption(String key,
 Object value)	

 Set various options and on the PDF, which largely (but not necessarily) follows
 the options available in the "Document Properties" dialog of Acrobat.

	void	setOutputProfile(OutputProfile targetprofile)	
Deprecated.
since 2.18 the OutputProfiler class or PDF(OutputProfile) constructor should be used instead of calling PDF.setOutputProfile

	void	setPageLabel(int startpage,
 int displaystart,
 String prefix,
 char type)	

 Set the "Page Label" for a range of pages in the PDF - the way the page number is
 presented.

	static void	setPropertyManager(PropertyManager manager)	
Set the PropertyManager to be used by the PDF library

	String	toString()	
	static void	useAWTEventModel(boolean awtevent)	
Set the PDF Library to work with the AWT event model.

	

Methods inherited from class java.lang.Object

equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

	

	

Field Detail

	
VERSION

public static final String VERSION

This variable contains the version number of the current build.
 A typical values would be "2.0". Please be sure to include this
 information with any bug reports

	
PAGESIZE_A4

public static final String PAGESIZE_A4

A parameter to newPage(String) to create a new A4 page - 210x297mm

	See Also:
	Constant Field Values

	
PAGESIZE_A4_LANDSCAPE

public static final String PAGESIZE_A4_LANDSCAPE

A parameter to newPage(String) to create a new landscape A4 page - 297x210mm

	See Also:
	Constant Field Values

	
PAGESIZE_LETTER

public static final String PAGESIZE_LETTER

A parameter to newPage(String) to create a new US Letter page - 8.5x11in

	See Also:
	Constant Field Values

	
PAGESIZE_LETTER_LANDSCAPE

public static final String PAGESIZE_LETTER_LANDSCAPE

A parameter to newPage(String) to create a new landscape US Letter page - 11x8.5in

	See Also:
	Constant Field Values

	
PAGESIZE_A5

public static final String PAGESIZE_A5

A parameter to newPage(String) to create a new A5 page - 148x210mm

	See Also:
	Constant Field Values

	
PAGESIZE_A5_LANDSCAPE

public static final String PAGESIZE_A5_LANDSCAPE

A parameter to newPage(String) to create a new landscape A5 page - 210x148mm

	See Also:
	Constant Field Values

	

Constructor Detail

	
PDF

public PDF()

Create a new, empty PDF document

	Since:
	1.0

	
PDF

public PDF(PDF pdf)

Create a PDF that's a clone of the specified PDF. When creating
 multiple copies of a single PDF, it's much faster to use this
 method than to re-read the PDF using a new PDFReader

	Since:
	2.0

	
PDF

public PDF(PDFReader reader)

Create a PDF from the specified PDFReader.
 The PDFReader class is available as part
 of the "Extended Edition" of the PDF library, and
 is included with this package. If the document
 contains multiple revisions, the latest revision is
 loaded.

	Since:
	1.1.12

	
PDF

public PDF(PDFReader reader,
 int revision)

Create a PDF from the specified PDFReader, using the specified
 revision of the document. The PDFReader class is available as
 part of the "Extended Edition" of the PDF library, and is included with
 this package. The revision number must be between 1 and
 PDFReader.getNumberOfRevisions(), otherwise an IllegalArgumentException
 is thrown.

	Parameters:
	reader - the PDFReader to use
	revision - the revision number to use - between
 PDFReader.getNumberOfRevisions() to load the latest or 1 to load the original document.
	Throws:
	IllegalArgumentException - if the revision is outside the specified range
	Since:
	1.2.1

	
PDF

public PDF(OutputProfile targetprofile)

Create a new PDF and immediately apply the specified OutputProfile.
 This constructor can be used to ensure that a brand new PDF will be
 created to comply with the requirements of the profile, and is the recommended
 way to enforce this for a new PDF.

	Since:
	2.20
	See Also:
	OutputProfiler.apply(org.faceless.pdf2.OutputProfile),
setOutputProfile(org.faceless.pdf2.OutputProfile)

	

Method Detail

	
isLicensed

public static boolean isLicensed()

Return true if the PDF is licensed, false if it's running as a demo

	Since:
	2.11.22

	
setPropertyManager

public static final void setPropertyManager(PropertyManager manager)

Set the PropertyManager to be used by the PDF library

	Since:
	2.8.5

	
getPropertyManager

public static final PropertyManager getPropertyManager()

Get the PropertyManager currently being used by the PDF library

	Since:
	2.8.5

	
setExecutor

public static final void setExecutor(ExecutorService e)

 Set the ExecutorService to be used by the PDF library to run
 any parallel operations. Parallel operations in the API include reading the PDF
 with a PDFReader, saving the PDF, and profiling.
 Prior to 2.18.1 parallel work was done in short lived Threads, but the
 use of an Executor allows the use of a system-wide thread pool for better
 resource management.

 The parameter to this method is the ExecutorService to use for these parallel
 operations, or null to use the PDF Library default. If the
 default is used, then a
 fixed size thread pool
 is created with the number of threads based on the Threads
 property if specified, or the
 number of processors if not. A special
 value of "1" for this property will ensure there is no parallel processing and
 everything is done in the calling thread.

	Since:
	2.18.1

	
getExecutor

public static final ExecutorService getExecutor()

Returns the ExecutorService used by the PDF library to run
 tasks, as set by setExecutor(java.util.concurrent.ExecutorService).

	Since:
	2.18.1

	
close

public void close()

 Close any file resources the PDF may be holding on to. These will be
 automatically closed during garbage collection, but this method may
 be called earlier if necessary to speed disposal of those resources.

	Since:
	2.11.2 - prior to that no resources were held and this method wasn't necessary

	
getPDFVersion

public int getPDFVersion()

Get the version of the PDF. The version provides an indication of which
 version of Acrobat the file can be loaded in, although it is quite normal
 for a 1.4 document to be loaded correctly by a 1.3 viewer (for example).
 Since Acrobat 9 and ISO 32000, version numbering has become more complicated,
 so to interpret the value from this method you will need the following table.
 Note the earliest version of PDF supported by this API is 1.3, so any
 documents from earlier revisions will be automatically upgraded.
 	3	PDF 1.3 (as created by Acrobat 4.x)
	4	PDF 1.4 (as created by Acrobat 5.x)
	5	PDF 1.5 (as created by Acrobat 6.x)
	6	PDF 1.6 (as created by Acrobat 7.x)
	7	PDF 1.7 / ISO 32000-1:2008 (as created by Acrobat 8.x)
	8	PDF 1.7 / ISO 32000-1:2008 Extension Level 3 (as created by Acrobat 9.x)
	9	PDF 1.7 / ISO 32000-1:2008 Extension Level 5 (as created by Acrobat 9.1)
	10	PDF 1.7 / ISO 32000-1:2008 Extension Level 8 (as created by Acrobat X)
	11	PDF 1.7 / ISO 32000-1:2008 Extension Level 11 (as created by Acrobat XI)
	12	PDF 2.0 / ISO 32000-2:2012

	Returns:
	the version of the PDF document
	Since:
	2.0
	See Also:
	setOutputProfile(org.faceless.pdf2.OutputProfile)

	
setOutputProfile

@Deprecated
public void setOutputProfile(OutputProfile targetprofile)

Deprecated.
since 2.18 the OutputProfiler class or PDF(OutputProfile) constructor should be used instead of calling PDF.setOutputProfile

 Set the Output Profile to use when rendering this PDF document.
 Since 2.18 this method will work as before, but is deprecated
 in favour of the new OutputProfiler class. Code calling
 this method like this:

 OutputProfile oldprofile = pdf.getFullOutputProfile();
 pdf.setOutputProfile(newprofile);

 should be updated to look like this:

 OutputProfiler profiler = new OutputProfiler(new PDFParser(pdf));
 OutputProfile oldprofile = profiler.getProfile();
 profiler.apply(newprofile);

 and for code that applies an OutputProfile to a new PDF,
 call the PDF(OutputProfile)
 constructor:

 OutputProfile profile = new OutputProfile(OutputProfile.PDFA3a, "sRGB", null, "http://www.color.org", null, icc);
 PDF pdf = new PDF(profile);

 or, finally, for simple cases where the features being applied are all
 part of the "basic" OutputProfile.

 new OutputProfiler(pdf).apply(newprofile);

	Throws:
	IllegalStateException - if the current profile doesn't match and can't be altered
 to match the specified profile, or if the current profile isn't known (because it's an
 existing PDF document that hasn't been scanned with getFullOutputProfile()).
	Since:
	2.0
	See Also:
	getPDFVersion(),
getBasicOutputProfile(),
getFullOutputProfile()

	
getBasicOutputProfile

public OutputProfile getBasicOutputProfile()

Return a basic OutputProfile for this PDF. The "Basic" profile consists of information which
 be easily determined without having to traverse the PDF or parse the page streams. It takes
 no time to run, and as it doesn't parse the page content it requires only the basic License
 to run. See the OutputProfile.Feature class to see which features are returned in
 the basic profile.

	Since:
	2.6.1
	See Also:
	OutputProfiler

	
getFullOutputProfile

@Deprecated
public OutputProfile getFullOutputProfile()

Deprecated.
since 2.18 the OutputProfiler class gives more control and should be used instead of PDF.getFullOutputProfile

 Return a full OutputProfile for this PDF. This routine parses the entire document to determine
 it's contents - this can be a very lengthy operation, so calling the
 getBasicOutputProfile() method is generally prefereable unless the
 Feature you're querying is not tested by that method.

 This method cycles through every object in the PDF structure in a process very similar to
 rendering the entire PDF to a bitmap, and updates the OutputProfile returned by
 getBasicOutputProfile() with the complete list of features used in this PDF - which may
 cause an IllegalStateException if it's set to something other than OutputProfile.Default.

 This method requires an "Extended Edition plus Viewer" license to run.

	Since:
	2.6.1
	See Also:
	OutputProfiler

	
getNumberOfRevisions

public int getNumberOfRevisions()

 Return the number of revisions made to the document. This will only be
 useful for documents read in using a PDFReader - all other PDFs
 will return zero. See the PDFReader class for more information on revisions.

 Note that in 2.7 the return value of this method was modified slightly so that the
 original version of a PDF is revision 1, not revision 0. New documents created with
 this library will still have a revision 0 before they're saved.

	Since:
	1.2.1
	See Also:
	PDFReader,
FormSignature.getNumberOfRevisionsCovered()

	
newPage

public PDFPage newPage(String pagesize)

 Create a new page of the specified page size and add it to this PDF.
 The page size is specified as a string of the form "WxHU", where W is the width
 of the page, H is the height of the page, and U is an optional units
 specifier - it may be "mm", "cm" or "in", and if it's not specified it's assumed
 to be points. The resulting page size is rounded to the nearest integer unless the
 units are specified as points (eg. 595.5x842 - fractional sizes added in 2.2.3).

 For convenience we've defined several standard sizes that you can pass in,
 like PAGESIZE_A4, PAGESIZE_A4_LANDSCAPE, PAGESIZE_LETTER,
 PAGESIZE_LETTER_LANDSCAPE and so on.

 Since 2.2.3 you can also pass in a String containing the common name of the paper size,
 optionally with a "-landscape" suffix, eg "A4", "Letter", "A2-landscape", "DL" and so on.
 All ISO sizes and most US and JIS paper (and some envelope) sizes are recognised.

 Example values include "210x297mm", "595x842" or "A4", which would both produce
 an A4 page, and "8.5x11in", "612x792" or "Letter", which would both produce a US Letter
 page.

 This method is identical to calling:

 PDFPage page = new PDFPage(pagesize);
 pdf.getPages().add(page);

	Parameters:
	pagesize - the size of the page to create
	Throws:
	IllegalArgumentException - if the specified page size cannot be parsed

	
newPage

public PDFPage newPage(int w,
 int h)

Create a new PDFPage object of the specified size and add it to
 this PDF. The size is specified in points. This method is identical to
 calling:

 PDFPage page = new PDFPage(w, h);
 pdf.getPages().add(page);

 The arguments are integers for API compatibilty reasons only. If required you can create
 pages sized to a fraction of a point using the newPage(String) method.

	Parameters:
	w - the width of the page, in points
	h - the height of the page, in points
	Returns:
	a new PDFPage object
	Since:
	1.0
	See Also:
	getPages()

	
newPage

public PDFPage newPage(PDFPage page)

Create a new PDFPage object that is a clone of the specified page, and
 add it to this PDF. This method is identical to calling:

 PDFPage page = new PDFPage(originalpage);
 pdf.getPages().add(page);

	Parameters:
	page - the PDFPage object to clone
	Returns:
	a new PDFPage object which is a clone of the specified page
	Since:
	2.0
	See Also:
	getPages()

	
getPages

public List<PDFPage> getPages()

Returns a List of the documents pages which may be manipulated to reorder, delete or
 append pages to the document. This is done using the standard List methods.
 For example, to reverse the pages in the document, you could do something like this:

 List pages = pdf.getPages();
 List temp = new ArrayList(pages);
 pages.clear();
 for (int i=temp.size()-1;i>=0;i--) {
 pages.add(temp.get(i));
 }

 or to move (not copy) all the pages from one PDF to another, try

 pdf1.getPages().addAll(pdf2.getPages());

 Note that each page can only be in this list once, and a page can't be in the page
 list of more than one PDF. Attempting to add a page from this list (or another PDF's
 page list) will remove it from that location automatically.

	Since:
	1.1.12

	
getNumberOfPages

public int getNumberOfPages()

Return the number of pages in this PDF. Simply calls pdf.getPages().size()

	Returns:
	the number of pages in the document
	Since:
	1.1
	See Also:
	getPages()

	
getPage

public PDFPage getPage(int pagenumber)

Return the specified page. Identical to pdf.getPages().get(pagenumber)

	Parameters:
	pagenumber - the page number, between 0 and getNumberOfPages()-1
	Returns:
	the specified page
	Throws:
	ArrayIndexOutOfBoundsException - if the page number is not
 in range
	Since:
	1.1
	See Also:
	getPages()

	
getPage

public PDFPage getPage(String name)

Get a "Named Page" from the PDF. If a Template with the specified name is found
 in the PDF it will be returned, and may be cloned via the PDFPage(PDFPage)
 constructor.

	Since:
	2.10.5

	
getLastPage

public PDFPage getLastPage()

Return the last page of this PDF. Identical to pdf.getPage(pdf.getNumberOfPages()-1)

	Since:
	1.0
	See Also:
	getPages()

	
setEncryptionHandler

public void setEncryptionHandler(EncryptionHandler encrypt)

 Set the EncryptionHandler to encrypt this document with. This method
 allows you to limit access to the document, either by requiring a password to
 open it, preventing the document from being printed and so on, or more.

 Changing encryption will destroy any digital signatures in the document, which
 is why Acrobat won't allow you to do lt. Prior to version 2.4, this library
 didn't preserve previously applied signatures when writing a file, so this wasn't
 an issue - a warning was displayed and the signature was removed. Now, however,
 signatures can be preserved, and this method will throw an
 IllegalStateException if called on a previously signed document. This will
 also occur if the encryption settings (like password, permission flags etc.) are
 changed. If you want to re-encrypt a signed document, you have to delete any
 existing signatures first.

	Parameters:
	encrypt - the EncryptionHandler to be used to encrypt and limit access to the document
	Since:
	2.0
	See Also:
	EncryptionHandler,
StandardEncryptionHandler

	
getEncryptionHandler

public EncryptionHandler getEncryptionHandler()

Return the EncryptionHandler used to encrypt the document, or null
 if no encryption handler is in use.

	Since:
	2.0
	See Also:
	EncryptionHandler,
StandardEncryptionHandler

	
setInfo

public void setInfo(String key,
 Object val)

 Set an item of PDF meta-information, such as author or title. Prior to version 2.6.2
 this method only updated the original "Info" dictionary, used by PDFs since the early
 days to store metadata. Since 2.6.2 this method can now be used to update both the
 original Info dictionary and the XMP Metadata.

 Most people won't need to worry about the details. To set the metadata in the PDF,
 just specify an appropriate key to set the Title, Author etc. of the document. The
 list of known keys is below, although any key can be used - if it's not on the
 list it will appear in the "Custom" pane in Acrobat's "Document Properties" window.

 	Title	The document's title. This value must be set for PDF/X documents
	Author	The name of the person who created the document.
	Subject	The subject of the document.
	Keywords	Comma separated list of keywords associated with the document.
	Creator	If the document was converted to PDF from another format, the
 name of the application that created the original document from which it was converted.
	Trapped	The document's trapping status. Must be "True", "False" or "Unknown". This has to be set to "True" or "False" for PDF/X documents

 Note that "CreationDate" and "ModDate" are set by the PDF Library internally and do not
 need to be set manually (although since 2.11.26 they can be overridden). "Producer" is
 set internally and cannot be changed.

 Since 2.6.2, updating one of the fields listed above will also update the XMP metadata
 to match. It's also possible to update fields in the XMP metadata that aren't listed above.
 This can be done be specifying the key name as xmp:ns:attribute,
 where ns is the recommended namespace prefix (as specified in the XMP specification) and
 attribute is the attribute to set. For instance, to set the "rights" attribute in the Dublin
 Core schema, you could call setInfo("xmp:dc:rights", "Copyright (C) Whoever");.

 No validation is done on these fields or the data, although fields listed as bags, sequences or
 language alternates in the XMP specificaiton will be automatically wrapped in the appropriate structure.
 If more complex fields need to be set then the setMetaData(java.lang.String) method can be used to pass in an
 entire RDF object.

 The value parameter may be String, Date, Boolean or Float, or
 null to remove that item of meta-information.

	Parameters:
	key - the meta-information field to set
	val - the value to set it to - a String, Date, Boolean, Float or null
	Since:
	1.0

	
getInfo

public String getInfo(String key)

 Return document meta data as set by setInfo() as a String.
 If the key name begins with xmp: then the appropriate field will
 be extracted from the XMP metadata stream - see the setInfo for
 more information

 For example, to get the author of the document from the PDF Info dictionary:

 String author = pdf.getInfo("Author");

 and to extract the "rights" attribute of the Dublin Core Schema from the XMP metadata:
 String copyright = pdf.getInfo("xmp:dc:rights");

 If a type of object requested from the XMP metadata cannot obviosuly be turned
 into a String, the value returned from this method is undefined.

	Parameters:
	key - the field to get
	Returns:
	the value of the specified field, or null if the field is not set
	Since:
	1.0

	
getInfo

public Map<String,Object> getInfo()

 Return the PDF meta information, as set by setInfo(). This
 is in the form of an unmodifable Map, where the keys are
 String objects, and values may be String, Date,
 Boolean, Calendar or Float objects. If no
 meta information is available, returns an empty Map.

 Since version 2.1.2, any keys representing Dates (such as "ModDate" or "CreationDate")
 will also have an equivalent entry with a leading underscore, eg. "_ModDate".
 These give the same information but as a Calendar rather than a
 Date. This is to allow extraction of TimeZone information, sadly lacking
 from the Date class.

 Note this map doesn't include any of the XMP metadata - only data from the original
 Info dictionary.

	Returns:
	an unmodifiable Map containing any meta information specified in the document.
	Since:
	1.1.12

	
setLocale

public void setLocale(Locale locale)

Set the default locale for this document. This is mainly useful in
 right-to-left locales like arabic, as it sets the default text alignment.
 The locale may be set and reset as many times as required. The locale
 in use when the document is rendered is considered to be the locale of
 the document as a whole.

	Since:
	1.1

	
getLocale

public Locale getLocale()

Return the PDF's Locale, as set by setLocale or (since 2.6.1) as
 loaded from the PDFs "Lang" tag. If no locale is specified this method returns
 null.

	Since:
	1.1

	
setAction

public void setAction(Event event,
 PDFAction action)

Specify an action to perform when the specified event occurs on the document.
 Valid events are Event.OPEN and Event.CLOSE, which occur
 within every version Acrobat, and Event.PRE_SAVE, Event.POST_SAVE,
 Event.PRE_PRINT and Event.POST_PRINT, which only occur
 in Acrobat 5.0 or newer viewers.

	Parameters:
	event - the event on which to perform the action
	action - the action to perform, or null to remove any current action
	Since:
	2.0

	
getAction

public PDFAction getAction(Event event)

Return the action that's performed when the specified event
 occurs on the document, as set by setAction. If no
 action is specified for that event, return null

	Since:
	2.0

	
setJavaScript

public void setJavaScript(String javascript)

Set the document-wide JavaScript. This JavaScript is executed when
 the document is first loaded - this is normally used to define
 functions and the like, in the same way as JavaScript defined in the
 <HEAD> of an HTML document.

	Parameters:
	javascript - the JavaScript to use for the entire document
	Since:
	1.1.23
	See Also:
	getJavaScript(),
PDFAction.formJavaScript(java.lang.String)

	
getJavaScript

public String getJavaScript()

Return the document-wide JavaScript, as set by setJavaScript(java.lang.String),
 or null if no JavaScript is defined for this document.

	Since:
	1.1.23
	See Also:
	setJavaScript(java.lang.String),
PDFAction.formJavaScript(java.lang.String)

	
getNamedActions

public Map<String,PDFAction> getNamedActions()

 Return a Map containing all the named actions in the PDF. Named
 actions (which must always be "GoTo" type actions) can be referenced
 from outside the PDF, which allows the document to be opened at a
 specific location. Here's how to do this:

 In the PDF, add the following code:

 pdf.getNamedActions().put("Myaction", PDFAction.goTo(somepage));

 Then in your HTML document, add the following code:

 The Map returned from this method can be manipulated using the
 normal Map methods to add or delete actions. The only
 restrictions is that keys must always be String objects
 and values must always be PDFAction objects that jump
 to a location in the document, like those returned from one of the
 PDFAction.goTo... methods.

	Since:
	1.1.12

	
getEmbeddedFiles

public Map<String,EmbeddedFile> getEmbeddedFiles()

 Return a Map containing all the Embedded Files associated with this
 document. Note this method does not return files embedded by way of
 a AnnotationFile method - they must be accessed via that
 class in the usual way.

 The Map returned from this method can be manipulated using the
 normal Map methods to add or delete actions. The only
 restrictions is that keys must always be String objects
 and values must always be EmbeddedFile objects. As with
 any map, the keys must be unique - we recommend adding files using
 their filenames as keys, like so:

 EmbeddedFile file = new EmbeddedFile(new File("Attachment.txt"));
 pdf.getEmbeddedFiles().put(file.getName(), file);

 Since 2.26, an EmbeddedFile can be a Folder or a File - although
 Folders will only exist in a "Portfolio" PDF. This is a new datamodel
 in PDF 2.0, so it's a slightly awkward fit with the existing API.

 If this PDF contains folders, the returned Map will
 contain only the Files, not the intermediate Folders. However
 Folders can be added to this Map, and if they are the Collection will
 be properly reconciled before the PDF is saved.

	Since:
	2.6
	See Also:
	getPortfolio(),
OutputProfile.Feature.EmbeddedFileWithoutAF,
OutputProfile.Feature.AssociatedFileNotEmbedded

	
getPortfolio

public Portfolio getPortfolio()

Return the PDF portfolio, creating it if necessary.

	Since:
	2.26

	
setMetaData

public void setMetaData(String xmldata)

 Set the XMP Metadata associated with this document. Since 2.26 this method
 calls getXMP().read(new StringReader(xmldata == null ? "" : xmldata)).
 We strongly recommend using the getXMP() method and modifying the XMP directly
 rather than using this method.

	Parameters:
	xmldata - the XML data to embed into the document, or null to remove it.
	Since:
	1.1.12
	See Also:
	getXMP()

	
getXMP

public XMP getXMP()

Return the XMP metadata as an XMP object. For properly-formatted
 XMP, this new (2020) approach is a considerably improvement over
 the getMetaData() method, which dates from 2001.
 If the PDF contains metadata which cannot be parsed as an XMP object
 (for example if it's not valid XML, or if the XML doesn't meet the
 basic requirements of XMP) then this method returns an XMP object
 which has XMP.isValid() == false (between 2.24.4 and 2.26
 it returned null).

	Returns:
	the XMP, which may be empty or invalid but wil never be null
	Since:
	2.24.4

	
getMetaData

public Reader getMetaData()
 throws IOException

 Return any XML metadata associated with the document.
 Since 2.26 this simply returns getXMP().isEmpty() ? null : new StringReader(getXMP().toString()).
 It is strongly recommended that any code migrates to using the getXMP() method.

 Since 2.24.3, the returned type is guaranteed to hava a toString() method that
 will return the Metadata as a String.

	Returns:
	a Reader containing the source of the XML, with toString() guaranteed to be the value of the metadata as a string, or null if the XMP is empty or missing
	Throws:
	IOException
	Since:
	1.1.12
	See Also:
	getXMP()

	
makePortfolio

public void makePortfolio(boolean portfolio)

Deprecated.
call #getPortfolio instead

 Convert the PDF to (or from) simple Portfolio PDF. The files to include should
 be added to the getEmbeddedFiles() Map, and content may optionally
 be written to the (single) page in this PDF which will be displayed by
 any PDF viewer other than Acrobat. Note that most of the fancy layout
 options available in Acrobat for Portfolios are implemented with Flash,
 and are not supported here by the PDF API.

 In Acrobat X and later, files may be emnbdded into subfolders. We support
 this by the EmbeddedFile.setPortfolioFolder(java.lang.String) method, but as folders
 are implemented in a very awkward way in the PDF object this must be
 set before the file is added to the EmbeddedFiles
 map. Attempting to modify the folder after the file is added will result in
 an exception.

 Here is an extremely simple example showing how to create a Portfolio with
 one file in a subfolder.

 PDF pdf = new PDF();
 PDFPage page = pdf.newPage("A4");
 pdf.makePortfolio(true);
 Map files = pdf.getEmbeddedFiles();
 EmbeddedFile ef = new EmbeddedFile(new File("file1.pdf"));
 ef.setPortfolioFolder("subfolder");
 files.put("File 1", ef);
 pdf.render(new FileOutputStream("portfolio.pdf"));

	Parameters:
	portfolio - true to convert the PDF to a "portfolio" PDF, false to reverse
 this: the PDF will be a plain PDF with some attachments.
	Since:
	2.14.1
	See Also:
	getEmbeddedFiles(),
EmbeddedFile.setPortfolioFolder(java.lang.String)

	
setOption

public void setOption(String key,
 Object value)

 Set various options and on the PDF, which largely (but not necessarily) follows
 the options available in the "Document Properties" dialog of Acrobat. The key
 is a case-insensitive String and the value is an object - it may be String,
 Boolean, Integer or some other type.

 Passing in an unrecognised key or an invalid value as a parameter will not throw
 an exception, but will simply have no effect. The list of currently supported
 options is below.

 	view.fullscreen	boolean	Open the document in full-screen mode
	view.displayDocTitle	boolean	The window's title bar should display the document title taken from the the Title entry of the getInfo() map. If false the title bar should display the filename instead (only works in Acrobat 5 and later)
	view.hideToolBar	boolean	Hide the viewer application's tool bars when the document is active
	view.hideMenuBar	boolean	Hide the viewer application's menu bar when the document is active
	view.hideWindowUI	boolean	Hide user interface elements in the Document window (such as scroll bars and navigation controls), leaving only the document's contents displayed
	view.fitWindow	boolean	Resize the document's window to fit the size of the first displayed page. Note this resizes the window to fit the document, not the other way round
	view.centerWindow	boolean	Position the document's window in the center of the screen. Note this moves the whole viewer to the center of the screen, not the document to the center of the viewer
	rtl	boolean	Set the reading direction for this document - true will set it as "right to left", false to the default of left-to-right. Note that setting the Locale will automatically set this value to an appropriate value.
	pagelayout	string	How pages are displayed in the main Acrobat window pane. Values are typically SinglePage (the default), OneColumn ("Single Page Continuous" in Acrobat 8), TwoColumnLeft ("Two-Up Continuous (Facing)" in Acrobat 8), TwoColumnRight ("Two-Up Continuous (Cover Page)" in Acrobat 8), TwoPageLeft ("Two-Up (Facing)" in Acrobat 8) or TwoPageRight ("Two-Up (Cover Page)" in Acrobat 8). Other values are possibile but won't be recognised by Acrobat
	pagemode	string	What to display in the left-most pane of the Acrobat window. Values are typically UseNone (the default), which prevents the left-pane from being displayed, or UseOutlines to display Bookmarks, UseThumbs to display the Page Thumbnails, UseOC to show the Layers tab or UseAttachments to show the Attachments tab. The value "UseSignatures" can also be used to set the initial panel to the Signature panel in the BFO PDF Viewer, although this value has no effect in Acrobat
	view.area	string	Which page box to display when viewing the document on screen. One of CropBox (the default), MediaBox, TrimBox, BleedBox or ArtBox. Typically this setting is best left unchanged
	view.clip	string	Which page box to clip the page contents to when viewing the document on screen. One of CropBox (the default), MediaBox, TrimBox, BleedBox or ArtBox. Typically this setting is best left unchanged
	print.area	string	Which page box to display when printing the document. One of CropBox (the default), MediaBox, TrimBox, BleedBox or ArtBox. Typically this setting is best left unchanged
	print.clip	string	Which page box to clip the page contents to when printing the document. One of CropBox (the default), MediaBox, TrimBox, BleedBox or ArtBox. Typically this setting is best left unchanged
	print.scaling	string	How to scale the document when printed. One of AppDefault (which uses the application defaults) or None (for no scaling). Some non-standard values are also recognized by our viewer, including Fit (scale the page up or down to fit the printable area, preserving the aspect ratio), FitUnlocked (as before but don't preserve the aspect ratio), ShrinkToFit and ShrinkToFitUnlocked (as for Fit and FitUnlocked, but only scale down to fit on the page, not up).
	print.duplex	string	What to set the print duplex settings to in the Acrobat Print Dialog. One of Simplex (the default), DuplexFlipLongEdge to duplex print on the long edge, or DuplexFlipShortEdge to duplex print on the short edge.
	print.matchtraysize	string	Whether to attempt to match the paper source to the page size.
	print.numcopies	integer	The number of copies to set in the print dialog, from 1 to 5.
	print.pagerange	List	Which pages to set as the default pages to print in the Print dialog. Specified as a java.util.List containing PDFPage objects.
	bfo.printasimage	boolean	Force the PDF to be printed as an image when printing with the BFO API only. This option may rarely be needed to print some documents correctly on some JVMs. It will be ignored by non-BFO applications
	marked	boolean	Identify the PDF as containing marked content (since 2.16)

	Parameters:
	key - a case-insensitive key determining the option to set - may not be null
	value - the value to set that key to. The type depends on the key, but in general a value of null means the default.
	Since:
	2.7.6

	
getOption

public Object getOption(String key)

Returns the current value of an option, as set by setOption(). Boolean
 values will return "true" or null.

	Parameters:
	key - a case-insensitive key determining the option to set - may not be null
	Since:
	2.7.6

	
getBookmarks

public List<PDFBookmark> getBookmarks()

Return the List of bookmarks at the top level of the document. The List
 contains zero or more PDFBookmark objects, and can be altered using any
 of the standard List methods to order the documents bookmarks in any way
 you see fit. New documents start with an empty list.

	Returns:
	the List of bookmarks at the top level of the document
	Since:
	1.0
	See Also:
	PDFBookmark

	
getDocumentID

public String getDocumentID(boolean primary)

 Returns a String representing this documents unique ID.
 The PDF specification recommends (but not requires) that every
 document is given a unique ID when it's created which is stored in two
 parts. The primary ID stays constant throughout the life of the document,
 the secondary should be updated on every revision - although in the first
 revision of a document they should be the same. So when comparing the IDs
 of two documents, if the primary and secondary both match you've found
 the same document, and when only the primary ID matches you've found a
 different version of the same document.

 This method return either the primary or secondary ID,
 depending on whether the primary parameter is true
 or false. The ID is generally just random characters.

 Calling this method before the document is created (ie when you've just
 created a new PDF but not called render()) will result in
 this method returning null. It may also return
 null for PDFs that do not have an ID specified, although they
 are fairly rare these days.

 Although the IDs are stored internally as 16 bytes, we return a
 String of 32 hex-characters to make them easier to display and compare.

	Parameters:
	primary - whether to return the primary or secondary ID
	Returns:
	a 32-character String representing the ID, or null if no ID is set
	Since:
	2.1.2

	
getForm

public Form getForm()

Return the Interactive Form or "AcroForm" object which is part
 of each PDF document.
 Note that using interactive forms requires the "Extended Edition"
 of the library - although the classes are supplied with the package an "Extended
 Edition" license must be purchased to activate this functionality.

	Returns:
	the documents AcroForm
	Since:
	1.1.13

	
importFDF

public void importFDF(FDF fdf)

 Import the contents of the specified FDF into the PDF document.
 Any form values specified in the FDF file will be used to set the
 corresponding form fields in the PDF, and since 2.2.2 any annotations in
 the FDF will be imported as well.
 If a field doesn't exist, a warning is printed and the field is ignored.

 Note that since 2.11.18 any JavaScript on the FDF will be imported as well,
 and this may involve executing JavaScript with the permissions of the PDF
 class. See the FDF.willExecuteJavaScript() method and the
 FDF.setJavaScript(java.lang.String, java.lang.String) method to disable this.

	Since:
	1.2.1

	
render

public void render(OutputStream out)
 throws IOException

 This method renders the completed PDF to an OutputStream. The stream
 is left open on completion. A document may be rendered more than once.

 Rendering the document typically merges all the revisions of a document, so after
 rendering the getNumberOfRevisions() method will always return zero. The
 exception to this is documents containing an existing digital signature, or
 documents with an OutputProfile requiring the
 OutputProfile.Feature.MultipleRevisions feature; there is a very specific technical
 case where this may be necessary, see the API docs on that class for more information.

	Parameters:
	out - the output stream to write the PDF to
	Throws:
	IOException - if the process could not be completed
	Since:
	1.0

	
getRenderProgress

public float getRenderProgress()

Get the progress of the render() method running in a different
 thread. The returned value will start at 0 and move towards 1 as the render progresses.

	Since:
	2.8

	
addPropertyChangeListener

public void addPropertyChangeListener(PropertyChangeListener listener)

Add a PropertyChangeListener to this object

	Since:
	2.11.19

	
removePropertyChangeListener

public void removePropertyChangeListener(PropertyChangeListener listener)

Remove a PropertyChangeListener to this object

	Since:
	2.11.19

	
setCache

public static void setCache(Cache cache)

Set the Cache to be used by the library. Note this is a static,
 method, which means a single cache is used for all PDFs. This also means you do
 not need to call this method more than once, and doing so is not only
 inefficient, it could theoretically cause problems in multi-threaded environments
 like servlet engines. To repeat - if you are going to call this method, do it once
 in an initialization routine before the first PDF is created.

	Since:
	2.2.2

	
setPageLabel

public void setPageLabel(int startpage,
 int displaystart,
 String prefix,
 char type)

 Set the "Page Label" for a range of pages in the PDF - the way the page number is
 presented. Calling the method will set the format for all pages from the specified
 startpage to the end of the document, so if multiple formats are required
 they should be set in ascending order.

 For example, to set the first 4 pages to i, ii, iii, iv and then number normally from 1, call:

 pdf.setPageLabel(0, 1, null, 'r'); // Number all pages in roman starting from 1
 pdf.setPageLabel(4, 1, null, 'D'); // Number from 4th page in decimal starting from 1

 To reset the page labels the the default, call setPageLabel(0, 1, null, 'D').
 This will number all pages as decimal numbers starting from 1.

	Parameters:
	startpage - the first page in the PDF to format with this label, starting from 0
	displaystart - the number to give the page specified by startpage - subsequent pages will
 be numbered sequentially from this value. Minimum value is 1
	type - one of 'D' for decimal, 'R' for upper-case roman, 'r' for lower-case roman, 'A' for upper-case letters, 'a' for lower-case letters or 'x' for no numbering - in this case just the prefix will be used.
	prefix - the prefix to give to the page labels, or null for no prefix
	Since:
	2.11.19

	
getPageLabel

public String getPageLabel(int num)

Get the "Page Label" for the specified page number, or null if none is
 specified.

	Parameters:
	num - the page number to get the label for, starting with 0
	Since:
	2.11.19
	See Also:
	setPageLabel(int, int, java.lang.String, char)

	
setLicenseKey

public static void setLicenseKey(String key)

 Set the license key for the library. When the library is purchased,
 BFO supplies a key which removes the "DEMO"
 stamp on each of the documents.

 Please note this method is static - it should be called BEFORE
 the first PDF is created, like so:

 PDF.setLicenseKey(.....);
 PDF pdf = new PDF();

	Parameters:
	key - the license key

	
getLicensedProperty

public static Object getLicensedProperty(String key)

Retrieve a property from the PDF License.

	Parameters:
	key - the property
	Since:
	2.26.3

	
useAWTEventModel

public static void useAWTEventModel(boolean awtevent)

Set the PDF Library to work with the AWT event model. Without this flag set (the default)
 any PropertyChangeEvent objects fired by classes in this package will be fired
 immediately. If this flag is set to true, they will be batched up and fired from the AWT
 EventQueue at some point in the future. If the PDF Library is being
 used in an AWT application, especially one that may have background threads performing
 tasks, this value should be set to true.

	Since:
	2.12

	
getLoadState

public LoadState getLoadState(int index)

For linearized documents that are being loaded
 from a URL via the PDFReader.setSource(URL),
 this method relays the current load state of the specified page.
 If the page is fully loaded this method returns null,
 otherwise it returns a LoadState which can be used to
 monitor the progress of the load.

	Parameters:
	index - the number of the page to query (0-indexed) - a value of -1 will check all pages, and return true only if they are all loaded.
	Returns:
	a LoadState describing the progress of the load, or null if the page is fully loaded or the PDF is not linearized.
	Since:
	2.14

	
rebuildStructureTree

public void rebuildStructureTree()

Rebuild the Structure Tree returned from getStructureTree().
 As of 2.24, this is simply an alias for

 Document document = pdf.getStructureTree();
 document.normalizeDocument();

	Since:
	2.19
	See Also:
	getStructureTree(),
Document.normalizeDocument()

	
getStructureTree

public Document getStructureTree()

 Returns the Structure Tree for the entire document as a W3C DOM.
 This is a representation of the logical structure of the PDF, which
 is typically used to enable accessibility on the PDF.

 The returned Document is live, and changes made to it will be reflected in
 the PDF. By default the tree will not contain any text content.
 Populating the tree with text content is a relatively time-consuming
 operation for large documents, so is not done by default. The tree
 will contain <bfo:content> elements marking where
 the text-content will go. Those nodes will be populated if the
 extract-text DOM config parameter is set to true;
 see below.

 The special nodes in the bfo namespace have a fixed set of
 attributes which identify the current page, marked-content id and/or
 index into the page's annotation list
 of the item; the attribute are live and will update as pages are reordered
 or removed.

 Changes made indirectly to this Document (either by moving pages
 in and out of the document, or by calls to beginTag
 on PDFPage, PDFCanvas or LayoutBox) may not be reflected in the tree
 until the Document.normalizeDocument() method is called.

 The returned Document can be modified, although it it not possible to
 modify or create new text or <bfo:content> elements.
 Modification is useful when pages from multiple PDFs have been merged
 together, to rationalize the structure.

 There are various parameters that can be set on the Document before
 the Document.normalizeDocument() method is called, to control how
 the tree is modified. With the exception of role-map, roles,
 lexicons, class-map, and trim-empty,
 all values are Boolean and are set and
 retrieved like so:

 document.getDomConfig().setParameter("extract-text", true);
 Object o = document.getDomConfig().getParameter("extract-text");

 	extract-text	
 This value can be set to a Boolean; when true, the next
 normalization of the Document will extract any text that has not yet been
 extracted, and populate the <bfo:content> elements in
 the tree with text and <bfo:blob> elements which are
 (currently) placeholders for images or other graphical operations.
 Note that if the PDF is retrieved from PDFParser.getStructureTree(),
 you will get the same object, but with this parameter set to true
 by default.

	fix-invalid-xml	
 The Document is a representation of an internal structure in the PDF, not
 an actual XML Document. As such is may contain content which is not valid
 in XML, such as element or attribute names with spaces or other illegal
 characters. This isn't a problem unless you are trying to import a copy of
 this Document into a regular XML document. If that's the case, setting
 this value to true will replace any invalid characters in the
 tree with underscores.

	fix-structure	
 This setting defaults to true. If there are any restrictions
 in the OutputProfile that would cause rendering to fail, if this flag
 is true an attempt to repair the tree will be made. For example, in
 PDF/UA-1, weak headings (e.g. H1, H2, H3
 elements) are required to descend consecutively - H3 must follow H2, not H1). If
 the Document fails to meet this requirement and fix-structure is
 set to true, the headings will be renumbered to meet this requirement.
 The number of repairs we can make automatically is fairly limited and is
 expected to vary, so the full list isn't documented here.

	trim-empty	Documents that have seen pages removed will tend to accumulate empty
 elements, if the content within those elements was on the removed pages.
 Setting this property to the String "always" or Boolean true will
 delete elements with no content descendants that are considered "safe"; this
 is most elements except those that denote structure, like >td<. Setting
 this value to the String "move" (the default) will move empty elements along
 with their siblings if pages are moved to/from a PDF. Setting this value to
 "none" or Boolean false will leave empty elements unmodified
 (which was the default behaviour to 2.24.4)

	role-map	
 In PDF, it is possible to "map" one type of element name to another. This allows
 custom elements to be created without breaking the validation rules; for example,
 if <Foo> is mapped to <Td> then the
 structure <Table><Tr><Foo>... is perfectly valid.
 The mappings are specified by a Map<String,String> which is
 retrieved from the role-map parameter; unlike the other parameters this
 cannot be set, although the returned map can be modified. For the previous
 example you would do rolemap.put("Foo", "Td").
 From 2.24.1 it is possible to include namespaces in both the keys and values to
 this map, by setting the name to uri + "\n" + localname. Names with
 no prefix are considered to be in the default namespace used by PDF 1.x. For example,
 in PDF 2.x the above example should be rolemap.put(NS + "\nFoo", NS + "\nTd"),
 where NS=https://www.iso.org/pdf2/ssn.

	roles	
 New in 2.28.2, the roles user parameter is an array of namespaces to
 prioritise. As described for role-map, in PDF it is possible to map one
 type of element to another in a different namespace. These maps are transitive (an element can be mapped to
 several namespaces at once) which can get confusing. The roles list
 can be used to determine which view of the tags you want to take - empty by default,
 but if namespaces are added the element name and namespace will be rolemapped to the first matching
 namespace in the list. For example:

 List<String> roles = (List<String>)document.getDomConfig().getParameter("roles");
 roles.add("http://iso.org/ssn/pdf2");
 roles.add("http://iso.org/ssn/pdf");

 will ensure that if any elements in the tree are role-mapped to the PDF2 or PDF1 namespace,
 the role-mapped element names are returned instead. All other element names/namespaces are returned
 as normal

	class-map	
 Each element in the Structure Tree may belong to one or more "classes". Belonging
 to a class means the element inherits the attributes defined on that class, although
 this feature seems to be rarely used. Since 2.24.1 this map of class attributes
 can be retrieved with the class-map parameter - the returned value is
 a Map<String,NamedNodeMap>.

	lexicons	
 The Structure Tree may include one or more pronunciation dictionaries stored as
 PLS (Pronunciation Lexicon Specification 1.0) files. Since 2.24.4 a List<EmbeddedFile>
 can be retrieved with the lexicons parameter, and altered to add new lexicons if
 required.

 Since 2.26, normal elements and <bfo:content> elements can have XMP
 metadata and/or a set of EmbeddedFile objects associated with them, which may be set
 or retrieved by calling Element.getUserData("metadata")
 or Element.getUserData("files") respectively. The "metadata"
 value is set as an XMP, String or Reader and retrieved as a XMP.
 The "files" property is set as an EmbeddedFile or a collection of the same, and
 retrieved as a Collection<EmbeddedFile>. In both cases, the returned objects
 are live and changes to them will be reflected when the PDF is written out.

 The presence of each of these structured in the XMP is indicated by two special attributes,
 bfo:metadata and bfo:files. If these attributes exist on an element, it
 will have the corresponding structure present in the user data.

 Since 2.28.4, every DOM node has a special read-only "placement" userdata which can be retrieved.
 This is a Map<PDFPage,Shape> which gives the physical position of this node
 on the page(s). This is always set for PDFs that have been read in, but not guaranteed to be set
 for trees that are in the process of being constructed.

 Populating the Document with text content requires
 an Extended Edition plus Viewer license.

	Since:
	2.24
	See Also:
	PDFCanvas.beginTag(java.lang.String, java.util.Map<java.lang.String, java.lang.Object>),
rebuildStructureTree(),
PDFParser.getStructureTree(),
OutputProfile.Feature.TaggedPDF

	
getOptionalContentLayers

public List<OptionalContentLayer> getOptionalContentLayers()

 Return the list of OptionalContentLayer objects defined in the PDF.
 This list will be empty for a freshly created PDF, and any layers created by
 the user must be added in the order they're required. When an existing PDF
 has been loaded via a PDFReader, the first call to this method will
 populate the list with the current state from within the PDF. The list is
 live, and any changes made to it will be saved when the PDF is saved.

 Items may be added to the list more than once but later occurrances will be
 ignored. Clearing the list will remove all optional content from the PDF.

	Returns:
	the Optional Content list
	Since:
	2.23.5

	
putUserData

public void putUserData(String key,
 Object value)

Set a custom property on the PDF. The property will be saved with the
 file with the "BFOO_" prefix.

	Parameters:
	value - a CharSequence, Number, Date, Calendar, Boolean, byte[], or a List/Map of those values, or null to remove the property
	Since:
	2.24.2

	
getUserData

public Object getUserData(String key)

Return a property previously set on the PDF with the putUserData() method

	Returns:
	a String, Boolean, Number, Calendar, byte[] or a Map/List of those values if found, or null if no such property exists.
	Since:
	2.24.2

	
getEmbeddedFileSource

public EmbeddedFile getEmbeddedFileSource()

When a PDF is loaded from EmbeddedFile.getPDF(), this
 method will return the EmbeddedFile that contains this object.
 Otherwise it will return null

	Since:
	2.26

	
getDocumentPart

public DocumentPart getDocumentPart()

Return the root DocumentPart, which will never be null but
 which will be empty unless this file uses
 DocumentParts

	Since:
	2.28.3

	
toString

public String toString()

	
putLiteral

public void putLiteral(String key,
 String tokens)

Put a literal token sequnce. For debugging

	Parameters:
	key - the key
	tokens - the token sequence, eg "true" or "/foo" or "[/Foo/Bar]". No refs, just direct objects.

	
clone

protected Object clone()

	Overrides:
	clone in class Object

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2024 Big Faceless Organization

