

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.3

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class OutputProfiler

	java.lang.Object
	
	org.faceless.pdf2.OutputProfiler

	
	All Implemented Interfaces:
	Runnable

public class OutputProfiler
extends Object
implements Runnable

 An OutputProfiler is used to create an OutputProfile for a PDF or to
 attempt to apply a new OutputProfile, modifying the PDF in the process. This can
 be a basic OutputProfile, which is very quick to create, or a full
 OutputProfile which involves scanning the entire PDF, and takes much longer.

 This class now underlies the PDF.getBasicOutputProfile() and PDF.getFullOutputProfile()
 methods, and brings several advantages; you can re-run the profile when you know
 the PDF has changed, you can create the profile in one thread and monitor its progress in another,
 and you can make structural changes to the PDF (such as substituting fonts or colors) that aren't
 possible with the previous API.

 To create a new profile with the same information as PDF.getBasicOutputProfile():

 OutputProfiler profiler = new OutputProfiler(pdf);
 OutputProfile profile = profiler.getProfile();

 and to duplicate the functionality of the PDF.getFullOutputProfile() method:

 OutputProfiler profiler = new OutputProfiler(new PDFParser(pdf));
 OutputProfile profile = profiler.getProfile();

 To duplicate the functionality of the PDF.setOutputProfile(org.faceless.pdf2.OutputProfile) method, you would call
 apply(org.faceless.pdf2.OutputProfile). For example, to retrieve the full profile of the PDF, check if it's
 compatible with a "target" profile and attempt to convert the PDF to that profile if not:

 OutputProfiler profiler = new OutputProfiler(new PDFParser(pdf));
 OutputProfile profile = profiler.getProfile();
 OutputProfile.Feature[] list = profile.isCompatibleWith(target);
 if (list != null) {
 profiler.apply(target);
 }

 This is an oversimplified example, as typically converting a PDF to a profile (known
 as "preflighting") requires more information. The OutputProfiler class
 allows you to specify various actions to perform on the PDF when converting -
 if specified these will involve a rebuild of the entire document, which can be time-
 consuming.

 As an example, assume a PDF has an embedded font in it - this is not allowed in PDF/A.
 To try to convert the PDF to PDF/A-1b, you could run the following code:

 PDF pdf = new PDF(new PDFReader(new File("unembeddedfont.pdf")));
 OutputProfiler profiler = new OutputProfiler(new PDFParser(pdf));
 OutputProfile profile = profiler.getProfile();
 ColorSpace srgb = ColorSpace.getInstance(ColorSpace.CS_sRGB);
 OutputProfile target = new OutputProfile(OutputProfile.PDFA1b_2005);
 target.getOutputIntents().add(new OutputIntent("GTS_PDFA1", null, icc);
 OutputProfile.Feature[] list = profile.isCompatibleWith(target);
 if (list != null) {
 profiler.apply(target); // This line will fail
 }

 This will fail with an
 IllegalStateException ("Denied Feature 'Unembedded TrueType Font' is set").
 To fix this you need to set an action on the OutputProfiler before you apply the
 new profile. This will cause the PDF to be rebuilt internally. Here's how the above example
 could be modified to replace some, or all unembedded fonts with an embedded font from the OS.

 PDF pdf = new PDF(new PDFReader(new File("unembeddedfont.pdf")));
 OutputProfiler profiler = new OutputProfiler(new PDFParser(pdf));
 OutputProfile profile = profiler.getProfile();
 ColorSpace srgb = ColorSpace.getInstance(ColorSpace.CS_sRGB);
 OutputProfile target = new OutputProfile(OutputProfile.PDFA1b_2005);
 target.getOutputIntents().add(new OutputIntent("GTS_PDFA1", null, icc);
 OutputProfile.Feature[] list = profile.isCompatibleWith(target);
 if (list != null) {
 OutputProfiler.AutoEmbeddingFontAction fontaction = new OutputProfiler.AutoEmbeddingFontAction();
 fontaction.add(new OpenTypeFont(new FileInputStream("C:\\Windows\\Fonts\\arial.ttf"), 2));
 profiler.setFontAction(fontaction);
 profiler.apply(target);
 }

 We recommend you check our Blog for more on this topic.

	Since:
	2.18
	See Also:
	OutputProfile

	

	

Nested Class Summary

Nested Classes 	Modifier and Type	Class	Description
	static class 	OutputProfiler.AutoEmbeddingFontAction	

 The AutoEmbeddingFontAction class is an implementation of OutputProfiler.FontAction that
 will replace
 unembedded fonts with embedded ones via a "best fit" algorithm.

	static interface 	OutputProfiler.ColorAction	
An action that can be set on an
 OutputProfiler to replace Colors.

	static interface 	OutputProfiler.FontAction	

 An action that can be set on an
 OutputProfiler to replace one font with another in the PDF.

	static interface 	OutputProfiler.ImageAction	
An action that can be used to resample or recompress bitmap images.

	static class 	OutputProfiler.ImageType	
ImageType constants are passed in to the setMaxImageDPI method

	static class 	OutputProfiler.ProcessColorAction	
The ProcessColorAction class is an implementation of OutputProfiler.ColorAction
 which will convert any process colors (i.e.

	static class 	OutputProfiler.RasterizingAction	
An action that will rasterize a page to a bitmap if required.

	static class 	OutputProfiler.RenderingIntent	
RenderingIntent constants are passed in to the OutputProfiler.ProcessColorAction.setRenderingIntent(org.faceless.pdf2.OutputProfiler.RenderingIntent) method

	static class 	OutputProfiler.SimpleImageAction	
An implementation of OutputProfiler.ImageAction that implements the functionality
 that was available via the setMaxImageDPI(org.faceless.pdf2.OutputProfiler.ImageType, float, float) method.

	static class 	OutputProfiler.Strategy	

 The Strategy enum determines how a PDF is repaired when an OutputProfile is
 applied to it - for example, are invalid fields in the metadata deleted?

	

Constructor Summary

Constructors 	Constructor	Description
	OutputProfiler()	
Create a new OutputProfiler

	OutputProfiler(PDF pdf)	
Create a new OutputProfiler and call setPDF()

	OutputProfiler(PDFParser parser)	
Create a new OutputProfiler and call setParser()

	

Method Summary

All Methods Instance Methods Concrete Methods Deprecated Methods 	Modifier and Type	Method	Description
	void	apply(OutputProfile targetprofile)	

 Set the specified OutputProfile on the PDF.

	void	cancel()	
Cancel this OutputProfiler's operation - if it is being run in another
 thread, that thread should terminate safely shortly after this method
 is called.

	List<ArlingtonModelIssue>	getArlingtonModelIssues()	
Traverse the PDF and generate a list of issues based on the Arlington
 PDF validation model.

	OutputProfiler.ColorAction	getColorAction()	
Return the OutputProfiler.ColorAction set by setColorAction(org.faceless.pdf2.OutputProfiler.ColorAction)

	OutputProfiler.FontAction	getFontAction()	
Return the FontAction set by setFontAction(org.faceless.pdf2.OutputProfiler.FontAction)

	float	getHairlineWidth()	
Return the hairline repair width, as set by setHairlineWidth(float).

	OutputProfiler.ImageAction	getImageAction()	
Return the OutputProfiler.ImageAction set by setImageAction(org.faceless.pdf2.OutputProfiler.ImageAction)

	OutputProfile	getProfile()	
Return the OutputProfile calculated by the run() method.

	float	getProgress()	
Return the progress of the run() or apply(org.faceless.pdf2.OutputProfile) operation, or 0
 if this is not being run, has completed or has been cancelled.

	OutputProfiler.RasterizingAction	getRasterizingAction()	
Return the OutputProfiler.RasterizingAction set by setRasterizingAction(org.faceless.pdf2.OutputProfiler.RasterizingAction)

	ExecutorService	getRasterizingActionExecutorService()	
Return the ExecutorService set by setRasterizingActionExecutorService(java.util.concurrent.ExecutorService)

	List<OutputProfiler.Strategy>	getStrategy()	
Return a copy of the list of all strategies currently being applied.

	boolean	isCancelled()	
Return true if the cancel() method has been called.

	boolean	isDone()	
Return true if the run() or apply(org.faceless.pdf2.OutputProfile) method has completed or
 been cancelled, false if it's still running or has not yet been started.

	boolean	isRunning()	
Return true if the run() or apply(org.faceless.pdf2.OutputProfile) method is running in
 another thread, and false if it has completed, been cancelled or not yet
 started.

	boolean	isStrategy(OutputProfiler.Strategy s)	
Return true if the specified Strategy will be considered by the
 apply(org.faceless.pdf2.OutputProfile) method when applying an OutputProfile.

	void	run()	

 Analyze the PDF and generate its profile.

	void	setColorAction(OutputProfiler.ColorAction action)	
Set the OutputProfiler.ColorAction to run on the PDF.

	void	setFontAction(OutputProfiler.FontAction action)	
Set the OutputProfiler.FontAction to run on the PDF.

	void	setFull(boolean full)	
Sets whether the OutputProfiler will create a full OutputProfile when it is run.

	void	setHairlineWidth(float width)	
If Hairlines or
 zero-width lines
 are denied when a new profile is applied, they will be changed
 to be lines of at least this width.

	void	setImageAction(OutputProfiler.ImageAction action)	
Set the OutputProfiler.ImageAction to run on the PDF.

	void	setJustNoticeableDifference(float threshold,
 String methodHint)	

 Set the threshold level at which two colors are considered "different",
 which is a criteria that is tested at various points throughout the apply(org.faceless.pdf2.OutputProfile)
 method.

	void	setMaxImageDPI(OutputProfiler.ImageType imagetype,
 float threshold,
 float target)	
Deprecated.
please call setImageAction(org.faceless.pdf2.OutputProfiler.ImageAction) instead.

	void	setParser(PDFParser parser)	
Set the PDFParser to create the OutputProfile from.

	void	setPDF(PDF pdf)	
Set the PDF to create the OutputProfile from.

	void	setRasterizingAction(OutputProfiler.RasterizingAction action)	
Set the OutputProfiler.RasterizingAction to run on the PDF.

	void	setRasterizingActionExecutorService(ExecutorService service)	
Set the ExecutorService to be used for rasterizing pages
 pages with a OutputProfiler.RasterizingAction.

	void	setStrategy(Collection<OutputProfiler.Strategy> strategy)	
Set the strategy that will be used to resolve problems encountered
 during apply(org.faceless.pdf2.OutputProfile).

	void	setStrategy(OutputProfiler.Strategy... strategy)	
Set the strategy that will be used to resolve problems encountered
 during apply(org.faceless.pdf2.OutputProfile).

	OutputProfile	waitForProfile()	
Wait for the profiling operation running in this (or another) thread to finish,
 and return the profile when done.

	

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

	

	

Constructor Detail

	
OutputProfiler

public OutputProfiler()

Create a new OutputProfiler

	
OutputProfiler

public OutputProfiler(PDF pdf)

Create a new OutputProfiler and call setPDF()

	Parameters:
	pdf - the PDF

	
OutputProfiler

public OutputProfiler(PDFParser parser)

Create a new OutputProfiler and call setParser()

	Parameters:
	parser - the PDFParser

	

Method Detail

	
setPDF

public void setPDF(PDF pdf)

Set the PDF to create the OutputProfile from. Setting just a PDF will allow only
 basic OutputProfile features to be extracted. Once set it cannot be changed.

	Parameters:
	pdf - the PDF to scan for features
	See Also:
	setParser(org.faceless.pdf2.PDFParser),
setFull(boolean)

	
setParser

public void setParser(PDFParser parser)

Set the PDFParser to create the OutputProfile from. Setting a PDFParser will allow
 both basic and full OutputProfile features to be extracted. Once set, it cannot
 be changed, but it can be reset by passing in null

	Parameters:
	parser - the PDFParser containing the PDF to scan for features
	See Also:
	setPDF(org.faceless.pdf2.PDF),
setFull(boolean)

	
setFull

public void setFull(boolean full)

Sets whether the OutputProfiler will create a full OutputProfile when it is run.
 This method simply creates a new PDFParser and calls setParser(org.faceless.pdf2.PDFParser)

	Parameters:
	full - whether to extract a full profile from the PDF.

	
setJustNoticeableDifference

public void setJustNoticeableDifference(float threshold,
 String methodHint)

 Set the threshold level at which two colors are considered "different",
 which is a criteria that is tested at various points throughout the apply(org.faceless.pdf2.OutputProfile)
 method. In particular, when two different Separations are
 found, they will be merged if the maximum Δe (delta-E) value for the two separations is
 less than this value. If greater than this value, the page will probably have to be rasterized.

 The methodHint can also be set to try and adjust the algorithm for
 determining Delta-E. Supported values are currently "CIDE2000" and "CIE94", or null for
 no change.

 The default values if not set are equivalent to setJustNoticeableDifference(2.5, "CIEDE2000").
 Note that although the theoreticaly correct value for the JND threshold is 1, the alternative is
 rasterization. So a little tolerance here is probably justified.

	Parameters:
	threshold - the value to use for "just noticable difference" - two colors with
 a difference above this value are considered to be different colors
	methodHint - the method to use for deltaE calculation.

	
run

public void run()

 Analyze the PDF and generate its profile. Whether this method
 calculates a "basic" or "full" profile depends on whether a PDFParser
 was specified on this class, either in the constructor or by calling setParser(org.faceless.pdf2.PDFParser).
 If available a full profile will be run, which can take some time. If not, a
 basic profile is generated which is essentially instantaneous.

 The process reads, but does not write to the structures of the PDF so can
 safely be run in parallel other operations that read the PDF, such as signature
 validation or rendering to bitmap.

	Specified by:
	run in interface Runnable
	See Also:
	isRunning(),
getProfile(),
apply(org.faceless.pdf2.OutputProfile)

	
cancel

public void cancel()

Cancel this OutputProfiler's operation - if it is being run in another
 thread, that thread should terminate safely shortly after this method
 is called. Once this object is cancelled, it cannot be restarted.

	See Also:
	isCancelled()

	
isRunning

public boolean isRunning()

Return true if the run() or apply(org.faceless.pdf2.OutputProfile) method is running in
 another thread, and false if it has completed, been cancelled or not yet
 started.

	See Also:
	run()

	
isDone

public boolean isDone()

Return true if the run() or apply(org.faceless.pdf2.OutputProfile) method has completed or
 been cancelled, false if it's still running or has not yet been started.

	
isCancelled

public boolean isCancelled()

Return true if the cancel() method has been called.

	See Also:
	isRunning()

	
getProfile

public OutputProfile getProfile()

Return the OutputProfile calculated by the run() method. If run()
 has not been called already, it will be called by this method. If it has already completed,
 it will return the result (or null if it failed). If it is currently running
 in another thread, this method will return null immediately.

	See Also:
	isRunning()

	
waitForProfile

public OutputProfile waitForProfile()

Wait for the profiling operation running in this (or another) thread to finish,
 and return the profile when done. This method will also wait if the profiling has
 not yet started.

	See Also:
	isRunning()

	
getProgress

public float getProgress()

Return the progress of the run() or apply(org.faceless.pdf2.OutputProfile) operation, or 0
 if this is not being run, has completed or has been cancelled.

	Returns:
	the progress of the operation, from 0 to 1
	See Also:
	isRunning()

	
setHairlineWidth

public void setHairlineWidth(float width)

If Hairlines or
 zero-width lines
 are denied when a new profile is applied, they will be changed
 to be lines of at least this width.
 This will rebuild the PDF. If no hairlines are present in the PDF when
 this method is called, no rebuild will be performed.

	Parameters:
	width - the width (in pts) to use to replace any hairlines. Must be > 0. The default is 0.2

	
setFontAction

public void setFontAction(OutputProfiler.FontAction action)

Set the OutputProfiler.FontAction to run on the PDF. This can be used to replace fonts in
 the PDF with new fonts.
 If this value is not null, the PDF will be rebuilt in apply().

	Parameters:
	action - the FontAction

	
getFontAction

public OutputProfiler.FontAction getFontAction()

Return the FontAction set by setFontAction(org.faceless.pdf2.OutputProfiler.FontAction)

	Since:
	2.26

	
setColorAction

public void setColorAction(OutputProfiler.ColorAction action)

Set the OutputProfiler.ColorAction to run on the PDF. This can be used to replace colors in
 the PDF.
 If this value is not null, the PDF will be rebuilt in apply().

	Parameters:
	action - the ColorAction

	
getColorAction

public OutputProfiler.ColorAction getColorAction()

Return the OutputProfiler.ColorAction set by setColorAction(org.faceless.pdf2.OutputProfiler.ColorAction)

	Since:
	2.26

	
setImageAction

public void setImageAction(OutputProfiler.ImageAction action)

Set the OutputProfiler.ImageAction to run on the PDF. This can be used to resample or recompress
 images colors in the PDF.
 If this value is not null, the PDF will be rebuilt in apply().

	Parameters:
	action - the ImageAction
	Since:
	2.22.2

	
getImageAction

public OutputProfiler.ImageAction getImageAction()

Return the OutputProfiler.ImageAction set by setImageAction(org.faceless.pdf2.OutputProfiler.ImageAction)

	Since:
	2.26

	
setRasterizingAction

public void setRasterizingAction(OutputProfiler.RasterizingAction action)

Set the OutputProfiler.RasterizingAction to run on the PDF. This can be used to
 rasterize page content to images.
 If this value is not null, the PDF will be rebuilt in apply().

	Parameters:
	action - the RasterizingAction
	Since:
	2.26

	
setRasterizingActionExecutorService

public void setRasterizingActionExecutorService(ExecutorService service)

Set the ExecutorService to be used for rasterizing pages
 pages with a OutputProfiler.RasterizingAction. A value of null means they are rasterized
 one at a time on the current thread (the default).
 Be aware that rasterizing is a memory intensive task, so to many threads will cause
 memory pressure.

	Since:
	2.26.1

	
getRasterizingActionExecutorService

public ExecutorService getRasterizingActionExecutorService()

Return the ExecutorService set by setRasterizingActionExecutorService(java.util.concurrent.ExecutorService)

	Since:
	2.26.1

	
getRasterizingAction

public OutputProfiler.RasterizingAction getRasterizingAction()

Return the OutputProfiler.RasterizingAction set by setRasterizingAction(org.faceless.pdf2.OutputProfiler.RasterizingAction)

	Since:
	2.26

	
getHairlineWidth

public float getHairlineWidth()

Return the hairline repair width, as set by setHairlineWidth(float).

	Since:
	2.26.1

	
setMaxImageDPI

@Deprecated
public void setMaxImageDPI(OutputProfiler.ImageType imagetype,
 float threshold,
 float target)

Deprecated.
please call setImageAction(org.faceless.pdf2.OutputProfiler.ImageAction) instead.

Set the maximum image resolution to be used in the PDF. If the PDF contains an
 image of the specified type which is not embedded at less than the specified
 threshold resolution, it will be resampled to the target resolution and replaced.

 Calling this method will cause the PDF to be rebuilt in apply().

	Parameters:
	imagetype - the ImageType whether this applies to one-bit, gray or color images
	target - the resolution to test the image against - all copies of the image embedded
 in the PDF must be this resolution or higher for it to be resampled.
	target - the resolution to resample the image to.

	
setStrategy

public void setStrategy(OutputProfiler.Strategy... strategy)

Set the strategy that will be used to resolve problems encountered
 during apply(org.faceless.pdf2.OutputProfile). By default, the strategy is OutputProfiler.Strategy.Default,
 but multiple items can be passed into this method to define the set
 of strategies that will be tried when thereturnapply() method is called.

	Parameters:
	strategy - a list of strategies to apply
	Since:
	2.26

	
setStrategy

public void setStrategy(Collection<OutputProfiler.Strategy> strategy)

Set the strategy that will be used to resolve problems encountered
 during apply(org.faceless.pdf2.OutputProfile). Like {@link #setStrategy(Strategy...} but this
 method takes a Collection.

	Parameters:
	strategy - a collection of strategies to apply
	Since:
	2.28

	
getStrategy

public List<OutputProfiler.Strategy> getStrategy()

Return a copy of the list of all strategies currently being applied.

	Since:
	2.26.3

	
isStrategy

public boolean isStrategy(OutputProfiler.Strategy s)

Return true if the specified Strategy will be considered by the
 apply(org.faceless.pdf2.OutputProfile) method when applying an OutputProfile.

	Since:
	2.26

	
apply

public void apply(OutputProfile targetprofile)

 Set the specified OutputProfile on the PDF. The supplied "target" profile
 will have a number of features denied and required,
 and this method will attempt to modify the PDF to match those requirements. If it's
 not possible then an IllegalStateException will be thrown.

 If the supplied profile references any features that require a full scan and the PDF
 has been loaded in (rather than create from scratch), then a full profile of the
 existing PDF must be run() to determine which features are currently set. If
 this is already in progress in another thread, this method will
 wait for it to complete. If it hasn't yet been started, it will be started on this
 thread by calling getProfile(). If no PDFParser has been set (in the
 constructor or through the setParser method) then a full profile cannot
 be created, and an IllegalStateException will be thrown.

 If a OutputProfiler.FontAction, OutputProfiler.ColorAction, OutputProfiler.ImageAction or OutputProfiler.RasterizingAction
 has been set on this class, an extra stage will be
 run which rebuilds the PDF content. It is also run if the full profile
 shows up any hairlines and the
 setHairlineWidth method was calling with a non-zero value.

 After this stage, or if no actions or hairline-replacement are specified, then the
 method will attempt to modify the PDF to add or remove required or denied features,
 as specified in the target profile. If that completes successfully, the OutputIntent
 on the target profile will be applied to the PDF and this method will complete.

 While this method is running the isRunning() method will return true, and the progress
 value returned from getProgress() will be updated, although the returned value is
 approximate at best: the amount of work required to modify
 a PDF to meet a target profile cannot realistically be predicted in advance.
 The cancel() method can be used to request the apply() method is interrupted. The
 PDF should be left in a consistent state if this happens, but that state will
 necessarily be somewhere between how the PDF was originally, and how it was going to be
 after modification. There is no way to revert the PDF to it's original state other than
 reloading. When this method finishes the isDone() method will return true, and
 the isCancelled() method will be false if the method completed successfully or threw
 an exception, and true if it was cancelled.

 Note that this method modifies the PDF extensively, so (unlike the retrieval of the OutputProfile
 from the run() method), any threads that read from the PDF must be paused while this
 method is running. The functionality to manage the progress of this method was added in 2.26.1

	Parameters:
	targetprofile - the OutputProfile that this PDF should be converted to match.

	
getArlingtonModelIssues

public List<ArlingtonModelIssue> getArlingtonModelIssues()

Traverse the PDF and generate a list of issues based on the Arlington
 PDF validation model. The list is recreated each time this method is
 called.

	Since:
	2.27.2
	See Also:
	ArlingtonModelIssue

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.3

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2023 Big Faceless Organization

