

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class GlobalSignDSSManager

	java.lang.Object
	
	org.faceless.pdf2.GlobalSignDSSManager

	

public class GlobalSignDSSManager
extends Object

 This class creates a SignatureHandlerFactory that makes use of
 GlobalSign's Digital Signing Service
 to sign documents remotely. There are two variations on this service; the original "DSS" added in
 revision 2.22, and the Qualified Signing Service or "QSS" variation added in release 2.28

 To use this class you will need login credentials and client certificate issued by GlobalSign.
 The client (or "mTLS") certificate must be stored in a KeyStore. You will also need details of
 the identity you wish to use to sign the PDF.

 DSS

 The "DSS" service is the original version of this API.
 An identity may be stored as an X.500 Distinguished Name, or extracted from an X.509 Certificate.
 Which is more appropriate wlil depend on the type of account that you
 have with GlobalSign, but as of 2020 we believe the most common way will be to simply specify
 an identity as an X.500 Principal, for example new X500Principal("CN=nnn") or
 new X500Principal("OU=nnn") - the type of account with GlobalSign will determine
 the validation policy which determines which fields are allowed.
 This is shown in this example

 import org.faceless.pdf2.*;
 import java.io.*;
 import java.security.*;
 import javax.security.auth.x500.X500Principal;

 String apikey = "apikey"; // supplied by GlobalSign
 String apisecret = "apisecret"; // supplied by GlobalSign
 String keystorePath = "keystore.pkcs12"; // path to KeyStore with client certificate
 char[] keystorePassword = "password".toCharArray(); // password for KeyStore
 X500Principal identity = new X500Principal("CN=identity"); // the user identity

 // Setup
 GlobalSignDSSManager gs = new GlobalSignDSSManager();
 KeyStore keystore = KeyStore.getInstance("PKCS12");
 keystore.load(new FileInputStream(keystorePath), keystorePassword);
 gs.setLogin(keystore, password, apikey, apisecret);

 // Sign
 FormSignature sig = new FormSignature();
 pdf.getForm().getElements().put("Sig1", sig);
 sig.sign(null, null, null, gs.createSignatureHandlerFactory(identity);

 QSS

 The qualified service was launched by GlobalSign in early 2023, and is a bit more interesting,
 as the workflow involves using a mobile phone to approve the signature. The signer identity
 is an email address, which must be registered (along with a mobile phone number) with GlobalSign
 before signing. Any signatures signed with that identity must be approved by the user with the GlobalSign QSS app (for
 iOS or
 Android)
 in order to complete; the PDF.render(java.io.OutputStream) method will wait until this is done or the request times-out.

 Registering users, retrieving user details and deleting users can all be done with this API,
 although we're not aiming to be a full-fledged user management system so the interface is intentionally simple.
 The workflow and signing process is described in this example.

 import org.faceless.pdf2.*;
 import java.io.*;
 import java.security.*;

 String apikey = "apikey"; // supplied by GlobalSign
 String apisecret = "apisecret"; // supplied by GlobalSign
 String keystorePath = "keystore.pkcs12"; // path to KeyStore with client certificate
 char[] keystorePassword = "password".toCharArray(); // password for KeyStore
 String email = "test@test.com"; // signer is identitifed by an email address

 // Setup
 GlobalSignDSSManager gs = new GlobalSignDSSManager("QSS"); // note "QSS"
 KeyStore keystore = KeyStore.getInstance("PKCS12");
 keystore.load(new FileInputStream(keystorePath), keystorePassword);
 gs.setLogin(keystore, password, apikey, apisecret);

 if (gs.getQSSUser(email) == null) {
 // Identity is not registered - it can be registered with this API if required
 String firstName = "Max";
 String lastName = "Mustermann";
 String mobile = "+447000123456";
 String id = gs.adQSSUser(firstName, lastName, email, mobile);
 System.out.println("User ID = " + id);
 // the user now downloads the GlobalSign QSS mobile app
 // and registers with this User ID. They confirm their identity
 // by entering codes sent to both their email and phone number,
 // and once confirmed they will be able to sign.
 } else {
 // Identity is registered, they can sign
 PDF pdf = new PDF(...);
 FormSignature sig = new FormSignature();
 pdf.getForm().getElements().put("Sig1", sig);
 sig.sign(null, null, null, gs.createSignatureHandlerFactory(email));
 pdf.render(outputstream);
 // actual signing occurs during render: the mobile app will receive
 // an alert, and assuming the user uses the app to approve the signing
 // request within the allotted time, the PDF is signed and pdf.render()
 // completes as normal. If not, the request will time-out and
 // pdf.render() will fail with an IOException containing the details.
 }

 Signatures created by this class are "Long-Term Validated" by default; they include
 a TimeStamp and all the necessary OCSP responses (all of which are, in theory, supplied
 by GlobalSign as part of the protocol). The hash algorithm is SHA-256 and
 as we understand the setup in 2023, all keys used with this service are RSA.

	Since:
	2.22, with QSS added in 2.28

	

	

Constructor Summary

Constructors 	Constructor	Description
	GlobalSignDSSManager()	
Create a new GlobalSign Digital Signature Service Manager using the "DSS" service.

	GlobalSignDSSManager(String service)	
Create a new GlobalSignDSSManager using the specified service.

	

Method Summary

All Methods Instance Methods Concrete Methods 	Modifier and Type	Method	Description
	String	addQSSUser(String givenName,
 String familyName,
 String email,
 String mobileNumber)	

 Request the creation of a new user within the GlobalSign Qualified Signing Service system.

	SignatureHandlerFactory	createSignatureHandlerFactory(String subject)	

 Creata a new SignatureHandlerFactory which will sign PDFs with credentials
 extracted fom the supplied String.

	SignatureHandlerFactory	createSignatureHandlerFactory(X509Certificate cert)	

 Creata a new SignatureHandlerFactory which will sign PDFs with credentials
 extracted fom the supplied X.509 Certificate.

	SignatureHandlerFactory	createSignatureHandlerFactory(X500Principal subject)	

 Creata a new SignatureHandlerFactory which will sign PDFs with credentials
 extracted fom the supplied X.500 distinguished name.

	void	deleteQSSUser(String email)	

 Request the deletion of a user within the GlobalSign Qualified Signing Service system.

	String	getAPIKey()	
Return the API key as set in setLogin(java.security.KeyStore, char[], byte[])

	String	getQSSUser(String email)	

 Request the registered details for a user within the GlobalSign Qualified Signing Service system.

	String	getService()	
Return the type used in the constructor; DSS or QSS

	String	getURL()	
Return the URL as set by setURL(java.lang.String)

	String	getValidationPolicy()	

 Return the Validation Policy for this account.

	void	setCustomAppearance(PDFCanvas canvas,
 float x1,
 float y1,
 float x2,
 float y2)	

 Set a custom appearance for this signature.

	void	setLogin(KeyStore keystore,
 char[] password,
 byte[] encrypted)	
Set the Login credentials to use this account.

	void	setLogin(KeyStore keystore,
 char[] password,
 String apikey,
 String apisecret)	
Set the Login credentials to use this account.

	void	setURL(String url)	
Set the URL prefix to use for all requests, for example "https://dss.globalsign.com:8443".

	

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

	

	

Constructor Detail

	
GlobalSignDSSManager

public GlobalSignDSSManager()

Create a new GlobalSign Digital Signature Service Manager using the "DSS" service.
 The returned object is safe for use across multiple threads, and does not expire.

	
GlobalSignDSSManager

public GlobalSignDSSManager(String service)

Create a new GlobalSignDSSManager using the specified service.
 The returned object is safe for use across multiple threads, and does not expire.

	Parameters:
	service - the service, either "DSS" or "QSS"

	

Method Detail

	
getService

public String getService()

Return the type used in the constructor; DSS or QSS

	Returns:
	the type
	Since:
	2.28.

	
setURL

public void setURL(String url)

Set the URL prefix to use for all requests, for example "https://dss.globalsign.com:8443".
 This is not typically required, as the correct value (at the time of implementation) is set by default.

	Parameters:
	url - the URL prefix

	
getURL

public String getURL()

Return the URL as set by setURL(java.lang.String)

	Returns:
	the URL
	Since:
	2.28

	
setLogin

public void setLogin(KeyStore keystore,
 char[] password,
 byte[] encrypted)
 throws GeneralSecurityException,
 IOException

Set the Login credentials to use this account.
 This must be done before any any communication with the signing service; this includes user-management as well as signing.

	Parameters:
	keystore - the KeyStore containing the GlobalSign client certificate
	password - the password for that KeyStore
	encrypted - the encrypted API credentials, as supplied by GlobalSign
	Throws:
	GeneralSecurityException - if there is an issue accessing the appropriate certificate from the KeyStore
	IOException - if there is an IO exception or if globalsign rejected the transaction

	
setLogin

public void setLogin(KeyStore keystore,
 char[] password,
 String apikey,
 String apisecret)
 throws GeneralSecurityException,
 IOException

Set the Login credentials to use this account.
 This must be done before any any communication with the signing service; this includes user-management as well as signing.

	Parameters:
	keystore - the KeyStore containing the GlobalSign client certificate
	password - the password for that KeyStore
	apikey - the "API key", as supplied by GlobalSign
	apisecret - the "API secret", as supplied by GlobalSign
	Throws:
	GeneralSecurityException - if there is an issue accessing the appropriate certificate from the KeyStore
	IOException - if there is an IO exception or if globalsign rejected the transaction

	
getAPIKey

public String getAPIKey()

Return the API key as set in setLogin(java.security.KeyStore, char[], byte[])

	Returns:
	the key
	Since:
	2.28

	
addQSSUser

public String addQSSUser(String givenName,
 String familyName,
 String email,
 String mobileNumber)
 throws IOException

 Request the creation of a new user within the GlobalSign Qualified Signing Service system.
 All parameters are required; the returned value is short alphanumeric String used as
 the "User ID", which is supplied to the GlobalSign QSS mobile app to register the user.
 Once registered, the email address can be used as a key to initiate signing.

 Note: During testing we found that sometimes the user ID was not returned from this method - if that happens,
 wait a few seconds before calling getQSSUser(java.lang.String), as the user_id is in that response.

	Parameters:
	givenName - the users given name. Required
	familyName - the users family name. Required
	email - the users email, which will be used as a login key and is case-sensitive. Required
	mobileNumber - the users full international mobile number, a "+" followed by digits. Required.
	Returns:
	a "User ID" for use with the GlobalSign QSS app, or null if none was returned.
	Throws:
	IOException - if communications with the QSS service fails
	Since:
	2.28

	
getQSSUser

public String getQSSUser(String email)
 throws IOException

 Request the registered details for a user within the GlobalSign Qualified Signing Service system.
 If a user with the supplied email address has previously been registered, return a JSON-formatted String
 containing the known details of that user.

	Parameters:
	email - the users email, which used as a login key and is case-sensitive. Required
	Returns:
	a JSON-formatted string containing the details of the user, or null if the user is not found
	Throws:
	IOException - if communications with the QSS service fails
	Since:
	2.28

	
deleteQSSUser

public void deleteQSSUser(String email)
 throws IOException

 Request the deletion of a user within the GlobalSign Qualified Signing Service system.

	Parameters:
	email - the users email, which used as a login key and is case-sensitive. Required
	Throws:
	IOException - if communications with the QSS service fails
	Since:
	2.28

	
getValidationPolicy

public String getValidationPolicy()
 throws IOException

 Return the Validation Policy for this account. The login method must have been called already.
 The Validation Policy is a serialized JSON object containing details about which fields can or
 cannot be set in the "identity" passed to GlobalSign. A full description of this datastructure
 is not offered here, but a high-level description is available in GlobalSign's guide to this service.

 If attempts to sign return an HTTP 422 Exception, this value should be consulted to determine
 which fields are disallowed in the request.

	Returns:
	the validation policy as a JSON-formatted String
	Throws:
	IOException

	
createSignatureHandlerFactory

public SignatureHandlerFactory createSignatureHandlerFactory(X509Certificate cert)
 throws IOException,
 CertificateException

 Creata a new SignatureHandlerFactory which will sign PDFs with credentials
 extracted fom the supplied X.509 Certificate. The certificate itself is used only
 as a source for the identity data sent to GlobalSign, so can be self-signed or unsigned.

 The following data is extracted from the certificate:

	Subject distinguished name
	Subject alternative names (optional)
	Extended key usage (optional)
	Subject directory attributes from extension 2.5.29.9 (see RFC3739) (optional)
	Subject Qualified Statements from extension 1.3.6.1.5.5.7.1.3: specifically those defined in ETSI EN 319 412-5 V2.1.1 (optional)

 The returned object can be used to sign multiple signatures in multiple threads simultaneously.

 Only applies to the "DSS" service

	Parameters:
	cert - an X.509 Certificate to extract the identity details from.
	Returns:
	a SignatureHandlerFactory which can be used to sign PDFs
	Throws:
	IllegalStateException - if this is a QSS instance, as this only applies to DSS
	IOException - if an exception occurs during setup
	CertificateException - if an exception occurs during extraction of the identify from the certificate

	
createSignatureHandlerFactory

public SignatureHandlerFactory createSignatureHandlerFactory(X500Principal subject)
 throws IOException

 Creata a new SignatureHandlerFactory which will sign PDFs with credentials
 extracted fom the supplied X.500 distinguished name.
 The returned object can be used to sign multiple signatures in multiple threads simultaneously.

 Only applies to the "DSS" service

	Parameters:
	subject - an X.500 distinguished name which will be used as the source of the identity details.
	Returns:
	a SignatureHandlerFactory which can be used to sign PDFs
	Throws:
	IllegalStateException - if this is a QSS instance, as this only applies to DSS
	IOException - if an exception occurs during setup

	
createSignatureHandlerFactory

public SignatureHandlerFactory createSignatureHandlerFactory(String subject)
 throws IOException

 Creata a new SignatureHandlerFactory which will sign PDFs with credentials
 extracted fom the supplied String.

 	
 For DSS, the String must be JSON-formatted and describe the structure from the
 GlobalSign specification. We would generally recommend an
 X.509 Certificate or
 X.500 Principal
 be used instead as there is less room for error. However a String can be
 supplied as described in the GlobalSign specification, eg
 {"subject_dn":{"organizational_unit":["Administration"]}}.

	
 For QSS, the String must be an email address previously registered with the service.

 The returned object can be used to sign multiple signatures in multiple threads simultaneously.

	Parameters:
	identity - the identity to be used with the service.
	Returns:
	a SignatureHandlerFactory which can be used to sign PDFs
	Throws:
	IOException - if an exception occurs during setup

	
setCustomAppearance

public void setCustomAppearance(PDFCanvas canvas,
 float x1,
 float y1,
 float x2,
 float y2)

 Set a custom appearance for this signature. This method allows you to
 add a signature, thumbprint, logo or any other form of custom image
 to your signature annotations (technically, this method sets the "n2"
 layer of the annotation). The canvas may be of any size, and will
 be scaled to fit the annotation on the page.

 Care needs to be taken when setting this value. It's not recommended
 to use a canvas containing a bitmap image with an opaque background, as
 this may mask any layers behind this one. In particular, a "?" is
 typically used on a layer below this one to indicate the signature has
 not been verified. Specifying an opaque image may result in this being
 obscured.

 As a optional convenience, by specifying non-zero coordinates for the
 x1,y1,x2 and y2 values, some text describing the signing certificate
 will be added to the canvas at the specified location. The format for
 this is fixed, but as it doesn't have to be included, the developer is
 free to add his or her own text if they don't like the result, simply
 by setting all four values to zero.

 As an example, the default PKCS7 appearance is set with the following code
 which loads a pre-defined pattern from a resources file:

 setCustomAppearance(new PDFCanvas("logo.Adobe", 1), 0, 35, 100, 65);

	Parameters:
	canvas - the canvas to display as the "n2" layer of the signature appearance.
	x1 - the left-most X co-ordinate to place the (optional) certificate text
	y1 - the bottom-most Y co-ordinate to place the (optional) certificate text
	x2 - the right-most X co-ordinate to place the (optional) certificate text
	y2 - the top-most Y co-ordinate to place the (optional) certificate text
	Since:
	2.28

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.4

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2024 Big Faceless Organization

