

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.3

	All Classes

	SEARCH:

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Package org.faceless.pdf2

Class AcrobatSignatureHandlerFactory

	java.lang.Object
	
	org.faceless.pdf2.AcrobatSignatureHandlerFactory

	
	All Implemented Interfaces:
	SignatureHandlerFactory

public class AcrobatSignatureHandlerFactory
extends Object
implements SignatureHandlerFactory

 An implementation of SignatureHandlerFactory that returns handlers
 suitable for signing documents for use with Acrobat 6.0 or later.

 For basic
 use it's quite acceptable to use the FormSignature.HANDLER_ACROBATSIX
 which is an instance of this factory. If advanced options need to be set
 (such as setting a TimeStamp server or changing the hash algorithm) then you
 can create an instance of this factory and set the options on that before
 passing it in to the FormSignature constructor.

 Since 2.15.2 this class's factories can create PAdES signatures.
 This stands for "PDF Advanced Electronic Signatures", and it's defined in both
 ETSI TR 102 923
 and in PDF 2.0. It's a particular application of
 CAdES signatures, which are
 the modern variation of the standard PKCS#7 signatures used by Acrobat.

 For our purposes the terms PAdES and CAdES are interchangeable, and when
 verifying a digital signature with the BFO API the two are not distinguished.
 When signing, to create a signature marked as PAdES you can call the
 setPAdES(boolean) method on this factory:

 AcrobatSignatureHandlerFactory factory = new AcrobatSignatureHandlerFactory();
 factory.setDigestAlgorithm("SHA-256");
 factory.setPAdES(true);
 ...

 To ensure a signature meets the requirements for PAdES part 4 (long-term validation),
 the following conditions need to be met:

	An RFC3161 TimeStamp server must be set by calling setTimeStampServer(java.net.URL)
	OCSP and CRL revocation checking must be peformed on signing by calling setValidateCertificatesOnSigning(boolean)
	The "Signing Certificate" attribute must be set by calling setUseSigningCertificateAttribute(boolean). This is the default.
	The PAdES identifier should be set by calling setPAdES(boolean). Slightly ironically, this is recommended but not required
	The entire certificate chain up to and including a trusted root must be available when signing

 This last point needs further explaining. For a signature to be considered long-term validated, the entire
 signature chain, up to and including any trusted root certificates, must be embedded in the PDF. This
 includes the the certificates certifying any OCSP or CRL responses obtained as part of the valdation. The
 root certificates may not be included as part of these responses, or it may not be included as an explicit
 part of the certificate-chain for the PrivateKey entry used when signing. However,
 so long as all the required root certificates can be found somewhere in the KeyStore supplied to the
 FormSignature.sign() method, then they will be embedded in the signed object. If
 they are not available (or if the OCSP or CRL requests fail for any reason), then a "PK3" warning will be
 emitted during signing with details of the break in the
 certificate chain. The signature will still be valid, but will not be considered "long-term" valid.

 Here's an example showing how to apply a PAdES long-term valid signature to a PDF. The KeyStore supplied is
 assumed to have all the required root-certificates

 KeyStore keystore = KeyStore.getInstance("JKS");
 keystore.load(new FileInputStream("keystore.jks"), password);
 PDF pdf = new PDF(new PDFReader(new File("input.pdf")));
 FormSignature sig = new FormSignature();
 AcrobatSignatureHandlerFactory factory = new AcrobatSignatureHandlerFactory();
 factory.setPAdES(true);
 factory.setValidateCertificatesOnSigning(true);
 factory.setTimeStampServer(new URL("http://timestamp.entrust.net/TSS/RFC3161sha1TS"));
 pdf.getForm().getElements().put("sig", sig);
 sig.sign(keystore, "myalias", password, factory);
 pdf.render(new FileOutputStream("output.pdf"));

	Since:
	2.7.1
	See Also:
	TimeStampHandlerFactory

	

	

Constructor Summary

Constructors 	Constructor	Description
	AcrobatSignatureHandlerFactory()	
Create a new SignatureHandlerFactory

	

Method Summary

All Methods Instance Methods Concrete Methods 	Modifier and Type	Method	Description
	PKCS7SignatureHandler.SigningEngine	createSigningEngine(KeyStore keystore,
 String alias,
 char[] password,
 String subfilter)	
Return the actual object that will do the signing.

	int	getContentSize()	
Return the anticipated content size, as set by setContentSize(int)

	String	getDigestAlgorithm()	
Return the Digest Algorithm, as set by setDigestAlgorithm(java.lang.String)

	SignatureHandler	getHandler()	
Return a handler created by this factory

	URL	getTimeStampServer()	
Return the first TimeStamp Server, as set by setTimeStampServers(java.util.Collection<java.net.URL>),
 or null if none are set.

	List<URL>	getTimeStampServers()	
Return the TimeStamp Servers, as set by setTimeStampServers(java.util.Collection<java.net.URL>).

	void	setContentSize(int size)	

 This method can be called to fix the space allocated for the "Contents" variable,
 which contains the encoded signature.

	void	setCRLs(List<X509CRL> crls)	
Set the list of CRLs that should be consulteed before requesting new
 ones from the internet.

	void	setCustomAppearance(PDFCanvas canvas,
 float x1,
 float y1,
 float x2,
 float y2)	

 Set a custom appearance for this signature.

	void	setDigestAlgorithm(String algorithm)	

 Set the message digest algorithm to use - one of "MD5", "SHA1", "SHA-256", "SHA-384", "SHA-512" or "RIPEMD160"
 for core PDF up to 2.0, or "SHA3-256", "SHA3-384", "SHA3-512" and "SHAKE256" which are defined in the ISO32001
 extension to PDF 2.0.

	void	setOCSPResponses(List<PKCS7SignatureHandler.OCSPResponse> ocspResponses)	
Set the list of OCSP responses that should be consulteed before requesting new
 ones from the internet.

	void	setPAdES(boolean pades)	
Set whether the factory should use the PAdES signature idenfifier, as
 specified in PDF 2.0 and supported in Acrobat X and later.

	void	setProvider(Provider provider)	
Set the Provider to be used for any signature
 operations created by this factory.

	void	setTimeStampServer(URL server)	
Specify the URL of an RFC3161 Timestamp Server.

	void	setTimeStampServers(Collection<URL> servers)	
Specify the URL of one or more RFC3161 Timestamp Server.

	void	setUseSigningCertificateAttribute(boolean use)	
Specifies whether the PKCS#7 object should be generated with the
 id-aa-signingCertificateV2 (1.2.840.113549.1.9.16.2)
 attribute, as defined in RFC5035.

	void	setValidateCertificatesOnSigning(boolean check)	

 Specifies whether the certificates used during signing should be verified
 with their OCSP or CRL responders, if available.

	

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

	

	

Constructor Detail

	
AcrobatSignatureHandlerFactory

public AcrobatSignatureHandlerFactory()

Create a new SignatureHandlerFactory

	

Method Detail

	
setDigestAlgorithm

public void setDigestAlgorithm(String algorithm)

 Set the message digest algorithm to use - one of "MD5", "SHA1", "SHA-256", "SHA-384", "SHA-512" or "RIPEMD160"
 for core PDF up to 2.0, or "SHA3-256", "SHA3-384", "SHA3-512" and "SHAKE256" which are defined in the ISO32001
 extension to PDF 2.0.

 The default since 2.20 is SHA256 - prior to that release it was SHA1.

 Note that algorithms other than MD5 or SHA1 require Acrobat 8.0 or later, and
 may require a non-standard or more recent JCE provider (for instance, SHA-256 was only added to the
 Sun JCE in version 1.6, and SHAKE256 is not in the default JCE as of Java 17 so will require a third-party
 procider such as BouncyCastle).

	Parameters:
	algorithm - the message-digest algorithm to use.
	See Also:
	FormSignature.setRequiredDigestAlgorithms(java.lang.String[])

	
setTimeStampServer

public void setTimeStampServer(URL server)

Specify the URL of an RFC3161 Timestamp Server. Since 2.24.4 simply
 calls setTimeStampServers(java.util.Collection<java.net.URL>).

	Parameters:
	server - The server to contact for the TimeStamp. May be null
 to turn off timestamping (the default). If a username/password are required
 they may be specified in the URL, eg "http://user:password@server.com".
	Since:
	2.7.1
	See Also:
	setTimeStampServers(java.util.Collection<java.net.URL>)

	
setTimeStampServers

public void setTimeStampServers(Collection<URL> servers)

Specify the URL of one or more RFC3161 Timestamp Server. If at least one
 server is specified, when the PDF is signed it will be contacted and the
 Signature timestamped. If the first server does not return a valid timestamp
 for any reason, the second will be tried and so on. If at least one TimeStamp
 server was specified and valid timestamp can be obtained, signing will faili
 with a GeneralSecurityException.
 RFC3161 Timestamps can be verified in Acrobat 7 or later, and with this
 class via the various "TimeStamp" methods.

	Parameters:
	servers - The list of one or more servers to contact for the TimeStamp.
 May be empty or null
 to turn off timestamping (the default). If a username/password are required
 they may be specified in the URL, eg "http://user:password@server.com".
	Since:
	2.24.4
	See Also:
	FormSignature.getSignDate(),
PKCS7SignatureHandler.getTimeStampCertificates()

	
getTimeStampServer

public URL getTimeStampServer()

Return the first TimeStamp Server, as set by setTimeStampServers(java.util.Collection<java.net.URL>),
 or null if none are set.

	Since:
	2.22

	
getTimeStampServers

public List<URL> getTimeStampServers()

Return the TimeStamp Servers, as set by setTimeStampServers(java.util.Collection<java.net.URL>).
 If none are set, return an empty list

	Since:
	2.24.2

	
getDigestAlgorithm

public String getDigestAlgorithm()

Return the Digest Algorithm, as set by setDigestAlgorithm(java.lang.String)

	Since:
	2.22

	
setValidateCertificatesOnSigning

public void setValidateCertificatesOnSigning(boolean check)

 Specifies whether the certificates used during signing should be verified
 with their OCSP or CRL responders, if available. The responses are included
 in the signature using the adbe-RevocationInfoArchival
 (1.2.840.113583.1.1.8) attribute, which will certify that the Certificates
 used to sign the PDF were valid at the time of signing. This is required
 for documents which need to meet the PAdES LTV (Long-Term Validation) specification.

 Setting this value to true may result in 1 or more network requests during signing.

	Since:
	2.15.2

	
setUseSigningCertificateAttribute

public void setUseSigningCertificateAttribute(boolean use)

Specifies whether the PKCS#7 object should be generated with the
 id-aa-signingCertificateV2 (1.2.840.113549.1.9.16.2)
 attribute, as defined in RFC5035.
 This is recommended for all signatures and required for PAdES signatures,
 and is on by default since 2.15.2

	Since:
	2.15.2

	
setCustomAppearance

public void setCustomAppearance(PDFCanvas canvas,
 float x1,
 float y1,
 float x2,
 float y2)

 Set a custom appearance for this signature. This method allows you to
 add a signature, thumbprint, logo or any other form of custom image
 to your signature annotations (technically, this method sets the "n2"
 layer of the annotation). The canvas may be of any size, and will
 be scaled to fit the annotation on the page.

 Care needs to be taken when setting this value. It's not recommended
 to use a canvas containing a bitmap image with an opaque background, as
 this may mask any layers behind this one. In particular, a "?" is
 typically used on a layer below this one to indicate the signature has
 not been verified. Specifying an opaque image may result in this being
 obscured.

 As a optional convenience, by specifying non-zero coordinates for the
 x1,y1,x2 and y2 values, some text describing the signing certificate
 will be added to the canvas at the specified location. The format for
 this is fixed, but as it doesn't have to be included, the developer is
 free to add his or her own text if they don't like the result, simply
 by setting all four values to zero.

 As an example, the default PKCS7 appearance is set with the following code
 which loads a pre-defined pattern from a resources file:

 setCustomAppearance(new PDFCanvas("logo.Adobe", 1), 0, 35, 100, 65);

	Parameters:
	canvas - the canvas to display as the "n2" layer of the signature appearance.
	x1 - the left-most X co-ordinate to place the (optional) certificate text
	y1 - the bottom-most Y co-ordinate to place the (optional) certificate text
	x2 - the right-most X co-ordinate to place the (optional) certificate text
	y2 - the top-most Y co-ordinate to place the (optional) certificate text
	Since:
	2.7.3

	
setContentSize

public void setContentSize(int size)

 This method can be called to fix the space allocated for the "Contents" variable,
 which contains the encoded signature. If a value > 0 is supplied then the Contents
 variable will have that much space allocated for it. If a value of <= 0 is supplied
 then the SignatureHandler.getEstimatedContentSize(int) method will be called with the negative
 of this value (so if you call setContentSize(-100), this will result in
 a call of getEstimatedContentSize(100).

 The intention of this is to allocate space in the Contents variable for external objects,
 such as TimeStamps from a remote server. For instance, if you were using a
 PKCS7SignatureHandler to digitally sign and an RFC3161 TimeStamp server was
 specified, you could pass in
 a value of "-1000" to this method to reserve 1000 bytes in the PKCS#7 object for the
 TimeStamp token.

	Parameters:
	size - the size of the Contents string in bytes, or <= 0 to determine automatically.
	Since:
	2.7.6

	
getContentSize

public int getContentSize()

Return the anticipated content size, as set by setContentSize(int)

	Since:
	2.28

	
setPAdES

public void setPAdES(boolean pades)

Set whether the factory should use the PAdES signature idenfifier, as
 specified in PDF 2.0 and supported in Acrobat X and later.

	Parameters:
	pades - if true, use the PAdES standard, otherwise create
 regular Acrobat signatures.
	Since:
	2.15.2

	
setProvider

public void setProvider(Provider provider)

Set the Provider to be used for any signature
 operations created by this factory. If set the Provider
 will be asked first for any resource, but if it is
 unable to provide one the default provider will be used
 as a fallback. This will override the Provider of the
 KeyStore passed in to
 FormSignature.sign(), which can also be used to set the Provider.

	Since:
	2.18.3

	
setOCSPResponses

public void setOCSPResponses(List<PKCS7SignatureHandler.OCSPResponse> ocspResponses)

Set the list of OCSP responses that should be consulteed before requesting new
 ones from the internet.

	Parameters:
	ocspResponses - the list of pre-retrieved OCSP responses, or null
	Since:
	2.28

	
setCRLs

public void setCRLs(List<X509CRL> crls)

Set the list of CRLs that should be consulteed before requesting new
 ones from the internet.

	Parameters:
	crls - the list of pre-retrieved CRLs, or null
	Since:
	2.28

	
createSigningEngine

public PKCS7SignatureHandler.SigningEngine createSigningEngine(KeyStore keystore,
 String alias,
 char[] password,
 String subfilter)
 throws GeneralSecurityException

Return the actual object that will do the signing. This can be overridden if a
 custom implementation demands it, e.g. for remote signing.

	Parameters:
	keystore - the KeyStore supplied to the sign method
	alias - the alias supplied to the sign method
	password - the password supplied to the sign method
	subfilter - the subfilter
	Throws:
	GeneralSecurityException
	Since:
	2.22

	
getHandler

public SignatureHandler getHandler()

Description copied from interface: SignatureHandlerFactory

Return a handler created by this factory

	Specified by:
	getHandler in interface SignatureHandlerFactory

Skip navigation links

	Overview
	Package
	Class
	Use
	Tree
	Deprecated
	Index
	Help

Big Faceless PDF Library 2.28.3

	All Classes

JavaScript is disabled on your browser.

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

Copyright © 2001-2023 Big Faceless Organization

