Mike Bremford • mike@bfo.com • Feb 2021

Print and CSS Color 4?

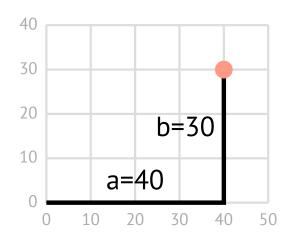
- Yes! CSS is already used extensively for print layout
- Commercial layout engines from BFO, Prince, Antenna House, RealObjects,
 Compart, Callas
- Open source engines from Vivliostyle, Weasyprint, AthenaPDF
- More implementations for print than for screen
- PDF has been doing color properly since 2000 (PDF 1.3)

Why should we listen to you?

- CTO of bfo.com; working with PDF since 1999
- Member of CSS Working Group, various PDF Association working groups
- Knows just enough about color to be dangerous
- We have implemented CSS Color 4 for PDF output

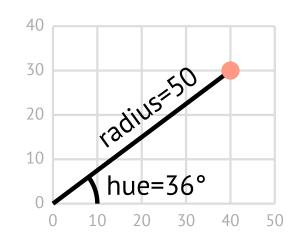
Let's compare: CSS Color 3

C	SS I	PDF
sRO	GB I	DeviceRGB
H	SL -	-

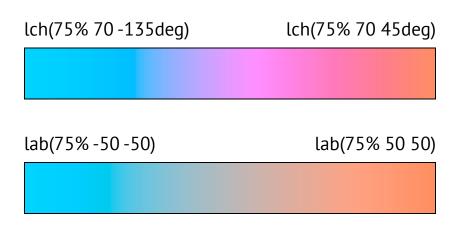

ICCBased (also CalRGB, CalGray)

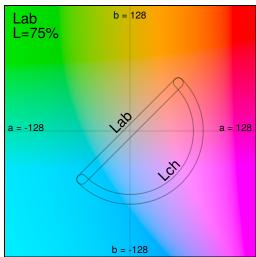
Let's compare: CSS Color 4

CSS	PDF
sRGB	DeviceRGB
HSL	-
HWB	-
ICC (also display-p3, rec2020, xyz etc)	ICCBased (also CalRGB, CalGray)
device-cmyk	DeviceCMYK
Lab	Lab
LCH	-
-	DeviceN (also Separation)


Alternative coordinates: HWB, HSL and LCH

LCH and Lab are different views of the same colorspace. Lab uses cartesian coordinates, LCH uses polar. HWB/HSL are roughly the same, but for sRGB.


= lch(75% 50 36deg)


lab(75% 40 30)

Gradients

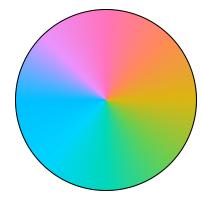
Simply converting the endpoints from LCH to Lab is not enough. We also need to control how we interpolate.

Interpolation

In CSS, all interpolation is linear. But PDF has more choices: we can stitch functions, use sampled functions, even PostScript. So simulating an LCH gradient in Lab is easy; we just need the right function.

Many ways to do this: we make a linear function, sample it halfway and measure ΔE (CIE94). If it's too far, we split the function and repeat for each half - *De Casteljau's* algorithm. Good for simulating HSL/HWB in RGB too.

Let's recompare: CSS Color 4


CSS	PDF
sRGB	DeviceRGB
HSL	DeviceRGB
HWB	DeviceRGB
ICC (also display-p3, rec2020, xyz etc)	ICCBased (also CalRGB, CalGray)
device-cmyk	DeviceCMYK
Lab	Lab
LCH	Lab
-	DeviceN (also Separation)

So it's all working perfectly?

- ICC profiles of input-type Lab and XYZ are disallowed in PDF. So we can't use an <u>"identity" XYZ</u>
 ICC profile for color(xyz n n n). Same for 7-color <u>FOGRA55</u>.
- Named Color ICC profiles also disallowed. Exceedingly rare. DeviceN/Separation colors are the better solution; Maybe css-color-n (for $n \ge 5$)?
- 2D "Coons Patch" gradients are required for CSS <u>conic-gradient</u>.

 But these typically interpolate in the wrong color space sRGB or similar.

 The corner colors are correct; the "solution" is to use smaller patches so the interpolation matters less. Coons Patches will also be required if the proposed <u><meshgradient></u> is added to SVG.

Print is mostly CMYK, ICC and Spot color

cmyk is widely supported. All commercial engines use cmyk(0%, 22%, 5%, 0%)

ICC may be supported, in implementationspecific ways. acolor-profile will help.

Device-independent color is required for PDF/A and PDF/UA, widely required by governments.

Demand for these should help adoption.

Thank You

mike@bfo.com

https://bfo.com/misc/css-color4-presentation

https://bfo.com/misc/css-color4-presentation.pdf

(The PDF version of this presentation demonstrates all of the concepts discussed)

